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1. Introduction

The majority of techniques used to study the dimensional reduction of D + d dimensional
Supergravity theories to D space-time dimensions may be divided into two broad categories.

The first, and most amenable to physical interpretation, requires the higher-
dimensional theory to be rewritten in terms of the harmonic modes of some compact
internal manifold and gives rise to an infinite tower of massive Kaluza-Klein fields cor-
responding to excitations of the higher harmonics. This results in a rather cumbersome



rewriting of the original theory and in practice only a truncation of the theory to the light-
est modes is considered [[l. The drawbacks of this approach are that the treatment of the
harmonic modes can be laborious in practice and the low energy modes that remain in
the truncated theory generally will not solve the higher-dimensional equations of motion.
Thus solutions of the truncated theory generally will not lift to solutions of the higher di-
mensional theory. This technique will be referred to as Kaluza-Klein reduction. The mass
of the modes in the Kaluza-Klein reduction are given by the eigenvalues of the Laplacian
on the internal manifold. As such the truncation to the lowest modes keeps the lightest
states whose number is given by the Betti numbers of the internal manifold.

The second approach, and the one that will be considered in this paper, is to consider
solutions of the higher dimensional equations of motion that may be given a lower dimen-
sional interpretation. This lower dimensional interpretation arises from the requirement
that the solution does not depend on the internal coordinates and generally will not in-
volve all of the fields in the higher dimensional theory. Such a truncation of the spectrum,
that solves the higher dimensional equations of motion, is called consistent although the
term is now generally applied to any solution of the full theory that is independent of
the internal coordinates, regardless of whether or not the solution arose from a truncation
of a harmonic expansion. In contrast to the Kaluza-Klein approach the effective theory
obtained may not include all of the lightest modes and the number of preserved fields will
not generally be related to the topological properties of the internal manifold.

There is some overlap between these categories and examples exist of Kaluza-Klein
truncations which are consistent. An interesting example is compactification on a torus
for which a truncation to the lightest harmonics (Fourier modes) yields an effective lower
dimensional theory. The resulting effective theory solves the higher dimensional equations
of motion and is an example of both procedures. As a counter-example, compactification
on a Calabi-Yau followed by truncation to the zero modes is not consistent in this sense.

The consistency of a reduction can often be understood group theoretically.! For exam-
ple, in the case of a reduction on a torus discussed above, the momenta of the compactified
fields along the internal directions give rise to conserved charges in the D-dimensional the-
ory. Truncating to the zero modes in this case leads to keeping only the singlets, therefore
there can be no chance of interactions generating the modes that have been truncated out.
This truncation is therefore consistent.

Various generalisations of the toroidal reduction which are consistent (i.e. do not de-
pend on the internal coordinates and solve the higher-dimensional equations of motion)
have been systematically studied [J-F. These include the Scherk-Schwarz reductions [ff,
and reductions with cohomological fluxes [f], ] which yield effective theories with scalar
potentials and non-abelian gauge symmetries. These reductions may be thought of as
massive deformations of the toroidal solution.

In this paper we consider Scherk-Schwarz reductions of IIB supergravity and F-Theory
that admit a geometric interpretation? as a compactification on a manifold X = G/T.

!Coset reductions appear to be an exception. There is, as yet, no systematic understanding of the
consistency of such reductions, despite the numerous examples that exist [E,H]
2We describe the Scherk-Schwarz solution as a compactification on X in the sense that the reduction



Here G is a, possibly non-compact, d-dimensional group manifold and I' C G is a discrete
subgroup acting from the left such that X is compact. The group manifold G has isometry
group G, X Gg (the action of the group on itself from the left and right respectively)
which is broken to Gg by the discrete quotient (see [J] for a detailed discussion), leaving
an effective theory with Gr gauge symmetry. In order for the reduced fields to be globally
defined on X the Scherk-Schwarz ansatz requires the reduction ansatz to be invariant under
the rigid action of G, [, [(. The spaces X are known as twisted tori in the literature.
Generally X will bare no relation to a torus fibration so the terminology is misleading.
Henceforth X = G/T shall be referred to as an identified group manifold.> Examples of
identified-group manifolds that are topologically twisted torus fibrations were given in [[J.

This construction and its generalisation to include matter with flux is reviewed in the
following section. Section 3 presents a study of the flux compactification of IIB Super-
gravity on identified group manifolds with particular focus on the gauge symmetry and its
breaking. The Kaluza-Klein reduction has a clear geometric interpretation by construc-
tion. The consistent reductions may not always be easily identified with the truncation
of a Kaluza-Klein reduction on some manifold and it is interesting to consider the higher-
dimensional origin of these reductions. In contrast to the reduction via harmonic analysis,
many solutions generally cannot be interpreted in terms of a geometric compactification.
Many examples now exist [J—[[f] of solutions of the higher dimensional theory, depending
only a set of macroscopic coordinates, for which the internal space cannot be understood in
terms of classical Riemannian geometry. In section 4 we consider S-duality twisted reduc-
tions of IIB Supergravity. These reductions do not arise from a geometric reduction of IIB
Supergravity but may be interpreted as a compactification of F-Theory on an identified
group manifold.

2. Flux compactifications on identified group manifolds

In this section the Scherk-Schwarz reduction on an identified group manifold X is reviewed.
The coordinates of the higher-dimensional space-time are z™ = (z#,y%) where y* (i =
1,2,...d) are coordinates on X and z* (u=d+1,d+2,...d+ D) are the coordinates on
the non-compact spacetime. The most general Einstein frame reduction ansatz invariant
under rigid Gy, is

ds® = €2 ds?, + e8¢ g™ (2.1)

where the one-forms
V=" — A™ (2.2)

include the Kaluza-Klein gauge fields A}, which have two-form field strength

1
F™ = dA™ + 5 fop" A" N A (2.3)

ansatz is constructed from the set of globally defined one-forms on X.
3Suggested by C. Hull. Other names one might consider are ‘Cocompact Orbifold’ or ‘Coset’, but these
names are misleading as I' is discrete and acts freely on G.



and «, 3 in (.1]) are the constants

1
d 2 a(D —2)
_ == 7 2.4
“ <2(D—2)(D+d—2)> p d (24)
The left-invariant one-forms o™ = ¢™;(y)dy’, where m = 1,2,...d, satisfy the struc-
ture equation
1
do™ + §fnpm0” NoP =0 (2.5)

which ensures that all y’-dependence drops out of the reduced theory. The integrability
condition d?c™ = 0 gives the algebraic constraint Jimn? fp}qt = 0, and the invariance of the
internal measure under G requires that G be unimodular? (f,,," = 0).

The v™ define a covariant basis for the reduction in which the one forms transform
under the local right action G, generated by the globally defined left-invariant vector
fields Z,, = 0,,%0; as

Sz(w)y' = w0y, Sz(wW)™ = —v" fr,) WP dz(W)A™ = —dw™ — A" fr,p,"WP (2.6)

Dimensional reduction gives rise to a metric g, (x), d Kaluza-Klein one-form gauge fields
Al (z), and d(d + 1)/2 scalars ¢(x) and gmp (), where gpmy, () is a positive definite sym-
metric matrix with unit determinant. This ansatz (R.1)) is invariant under rigid G, trans-
formations, and under local G transformations in which the parameters depend on z* and
the A™ transform as gauge fields, while the scalar fields g, (x) transform in the bi-adjoint.

The D + d-dimensional Einstein-Hilbert Lagrangian, reduced on a d-dimensional iden-
tified group manifold X}, gives the effective theory

1 1 1
Lp=Rx1- 5 * do N\ dp — §gmpg”q * Dgmn A Dgpg — 562(ﬁ_a)¢gmn x F™ N F"
L

_Ze (oe—ﬁ)go (gmngpqgtsfptqusn + 2gmnfqmpfpnq) * 1 (27)

where

Dgmn = dgmn + gmpfnquq + gnpfmquq (2'8)

is a Gr-covariant derivative.

Theories of interest to us will also include antisymmetric tensor fields. In the ansatz
of [, the internal components Tij..k of a tensor field fMN___ p in the reduced theory are
taken to have y dependence given only by the frame fields

Tij..k(x,y) = Ton.p(x)o™ o™ . opP (2.9)

defining scalar fields Tmn___p(x) in the reduced theory, so that for example the internal metric
takes the form g¢;;(x,y) = gmn(x)o;"0;". As an example, consider the antisymmetric two-
form potential, which we write in the (G g-covariant) v"™ basis as

B m 1 m n
By = B + Baym A" + §B(o)mnv ANVT + @9 (2.10)

4Relaxing the unimodular condition still allows the reduction of the equations of motion, but not the
Lagrangian.



where a left-invariant flux has been introduced
1

K= EKmnpam No™ AoP (2.11)
where K = dw(y). The flux is closed (which requires the algebraic constraint Ky, fiqq” =
0) but generally not exact so that w) is defined only locally. Defining the algebraic
operator Q, which acts on the space of antisymmetric tensors Ky my..m, = Kimyms...m,)s
such that

Q: KmlmZ---mp - (QK)mlmZ---mp+l = f[m1m2nKm3m4mmp+1]n (2‘12)
The condition Kj,,pfq1” = 0 may be written as (QK)mnpg = 0, or Kynp € KerQ. The
condition ff,,? fp]qt = 0 means that Q% = 0 and we may define the algebraic cohomology
H(Q) = KerQ/ImQ. It was shown in [fJ] that a flux of the form K, = (9n)mnp for some
Nmn = —Nnm can be removed by a field redefinition of B and is therefore trivial. Therefore
the fluxes of interest are those in H(Q). For field strengths with more complicated Bianchi
identities dH # 0, then K, fq1” # 0 and the statement of algebraic cohomology must
be suitably modified.
The field strength H 3) = dé(z) is invariant under the transformation dx ()\)E(Q) = dX(l)
where
)\(1) = )\(1) + )\(O)mvm (2.13)

and A(;) = A,dz’. The antisymmetric tensor symmetry and the G symmetry of X" gives
the infinitesimal transformations

1
53(2) = d)\(l) + §Kmnpprm N A"
5B(1)m = D)\(O)m + B(l)nfmpnwp — Kmnpprn
3Boymn = frmn" A)p + 2B(0)mip finlg"@? + Kmnpe” (2.14)

where DAy, = dA\oym + fmn®A)pA”. Combining these variations with that of the
graviphoton 0 A™ = —Dw™, these infinitesimals generate the Lie algebroid
[02(©0),0z2(w)] = dz(frp""w"W") — 6x (Kmppw"WP) — Sw (Kmnpw"w? A™)
[0x(A),0z(w)] = —dx (Am frp™w")
[0x (), 0x(N)] =0 (2.15)

where 0z(w) = Ww™Zy, 0x(A) = Ay X™ and dw(A) = A\, WH. As argued in [, [I],
such field dependence is characteristic of theories in which we require field strengths to
have Chern-Simons terms in order to be gauge invariant and such Chern-Simons terms are
generated naturally by dimensional reduction. The algebra may be viewed as a Lie algebra
bundle over the non-compact D-dimensional spacetime, i.e. at each point x, on the base,
the graviphoton is constant along the fibre and the algebroid reduces to a Lie algebra with
structure constants fimn?, Kmnp and Ky AL ().

The algebroid (P-1H) has Lie subalgebra [2J]
(Zmy Zn) = — frn Zp + Kpnp XP
(X", Zp] = fop" XP
[X™ X" =0 (2.16)



In the next section we shall consider a generalisation of this reduction to the full bosonic
sector of the IIB supergravity.

3. Compactifications of IIB supergravity

We consider here the reduction of the bosonic sector of IIB supergravity on identified
group manifolds with flux. The general reduction of the Fermi sector and Supersymmetry
breaking will be considered elsewhere.® An important property of the IIB theory is the
self-duality of the Ramond-Ramond five-form field strength.

6(5) = *6(5) (31)

Such a constraint cannot naturally be encoded in a Lagrangian formalism and it must be
sefarately imposed on the equations of motion. The approach will be to treat @(5) and
*(G (5) as independent fields in the Lagrangian and impose the self-duality constraint after
the dimensional reduction. We shall only be interested in the general structure of the
reduced theory, in particular the gauge symmetries, so the issue of self duality will not play
a significant role.

The bosonic sector of the ten-dimensional IIB Lagrangian, written in a manifestly
SL(2) invariant form is

5 1 A I R N N T
LB =Rx1+ ZW‘ <*d/C A dIKC ) — §’Cab*H(3) /\'H(g)—z *G(5) /\G(5)—Z€abC(4) /\'H(g) /\'H(g)
(3.2)
Where the 3-form field strengths H,) transform as a doublet under SL(2), the self-dual

five-form @(5) as a singlet and the axio-dilaton 7 (written above in terms of the scalars E)
in a fractionally linear way

;o areh (ab>€SL(2) (3.3)

ct +d cd

The trace in (B.9) is taken over the SL(2) indices a = 1,2. The field strengths and scalars
IC are defined;

~

~ ~ 1 w o Ab ~a Ra dbz C P %
Gs) = dCaytgeamBo N Hiy)  Hi = dBl) = (dCE2; > L <C(0) |T(|2) > -

where

01 .
€ab = <_10> 7 = C() +ie ¢ (3.5)

The scalar sector consists of a dilaton ¢ and a Ramond-Ramond zero-form C() which
parameterise the coset manifold SL(2;R)/SO(2) ~ SU(1,1)/U(1). C) and c(y) are p-form
fields arising from the massless Ramond-Ramond sector of the Type IIB String spectrum

5See [@] for a recent discussion of A/ =1 vacua in the case where X is a six-dimensional Nil or Solve-
manifold.



and b() is the Kalb-Ramond potential. The ten dimensional Equations of motion derived
from the Lagrangian (B.9) are

. 1 o~ =
d * G(5) = §EabH(3) AN H&)
d * ’Eabﬁé) = Eabﬁ&) AN 6(5)
d+dK® = «Hey N Hy) (3.6)

and the Bianchi identities are

~

~ 1 ~ ~
dG5) = geaH* AH =0 dH" =0 (3.7)

which are consistent with the self-duality constraint (B.1). The action of S-duality on these
fields is
K — S'KSs B\(Q) — S_lg(g) (3.8)

and ¢, is invariant
€— S'eS =¢ (3.9)

where S € SL(2;Z) C SL(2).

3.1 Inclusion of fluxes

The flux ansatz for the two form is a generalisation of that described in [{, BJ], which
transforms covariantly under S-duality, mixing the Neveu-Schwarz and Ramond two form
fluxes. A left-invariant flux, M (‘g), is included in the two form reduction via the ansatz

~

(2) = Bl T ®(y) (3 = Hig) + M, (3.10)

where H(ag) = dB&) and

dwly) = My = éanp“Jm Na™ AP (3.11)
Mnp® are constant, SL(2) valued antisymmetric coefficients. Introducing flux on the @(5)
field strength is not straightforward due to the Chern-Simons term in G(5). Such terms
threaten the consistency of the truncation as they introduce bare flux potential terms wé)
which have explicit y dependence. In [RJ] it was demonstrated that (for the Heterotic
string), by a careful choice of flux, the consistency of the truncation may be maintained
even for theories with such Chern-Simons terms. These techniques can be generalised to

~

higher degree forms and applied to the C(4) potential of the IIB theory to give the flux ansatz

~ ~ 1 ~
C(4) = 5(4) - §eabw?2) N B&) + W(4) (312)
where )
d’W(4) = —§€abwzl2) AN M(bg) + ,C(5) (313)



K(s) is the left-invariant five-form flux

1
Ke) = menpqtam Ao AP Aol Aot (3.14)

The first term on the right hand side in (B.13) is required to cancel any y-dependance in

~

the five form field strength that may arise due to the flux on Bé) in the Chern-Simons
term of @(5). The reduction ansatz for the five-form field strength (B.4) is

q 1 na I3 a )
G(5) = d5(4) + §€ab <B(2) N H&) — QM(g) N 3?2)> + ’C(5) (3.15)

It will be important, especially when considering the symmetry transformations, to
distinguish between those parts of the potentials with flux included implicitly, denoted by

~

a

the calligraphic script B(z) and 5(4), and those without, B&) and §(4). The requirement
that the fluxes do not alter the Bianchi identities (B.7) requires that the fluxes satisfy

1 a __m n 1 a
d <6anp o No" A O'p> =0 d <—§Eab’W(2) A M(bg) + ,C(5)> =0 (316)

which impose the algebraic conditions

M[mn\taf\pq}t =0
2€abM[mnpants}b + 3K[mnpq|lf|ts]l =0 (317)

In addition to the condition f,,,,? fp]qt =0.

3.2 Flux compactification on identified group manifolds

The Chern-Simons term of the ten-dimensional IIB Lagrangian has an explicit dependence
on the potential of the fluxes w&) and @), entering through 5(4). It is the fluxes M &) and
K(5) that are globally defined, not the potentials so one might worry that the Lagrangian
is not well defined and the reduction not consistent. However variation of the Lagrangian
with respect to the potentials §(4) and B\&) still yield the correct, well defined, equations of
motion (B.4). One way to proceed would be to disregard the Lagrangian (B.2) and reduce
the equations of motion (B.g) directly.

The fact that the physics depends only on the fluxes M (“3) and K5y and not the poten-
tials w&) and w(4) is due to the gauge invariance of the theory under antisymmetric tensor
transformations. However, even though the equations of motion are manifestly invariant
under the tensor transformations, the Lagrangian is not. Consider the Chern-Simons form
contribution to the action

1 2 sa b
SC'S = Z /M EabC(4) N H(g) N H(g) (318)
under the antisymmetric tensor transformation & «C = dA the action transforms as
1 NN b

1 / SN .
1/ (3 NH) (3.19)



which is zero if either the ten-dimensional spacetime has no boundary or A vanishes on
the boundary. The problem arises when one considers large gauge transformations. The
fact that Scog is not manifestly invariant under large gauge transformations is related to
the appearance of the bare flux potentials w&) and w4). This issue, in addition to the
self-duality constraint provides good motivation to consider the reductions of the equations
of motion directly. However there are some issues, such as moduli fixing, in which it can
be helpful to have an explicit reduction of the scalar potential.
The left-invariant Scherk-Schwarz reduction ansatze are
1

~ 1
5(4) = 5(4) + S(3)m N ZEE 55(2)7”” AV AV 4 5

1
+ﬂ5(0)mnmljm AV AVP AV

Symnp ANV AV AVP (3.20)

~ 1 1
G(5) = G(5) + G(4)m AV™ + §G(3)mn AV AV + 6G(2)mnp AV AV A VP

1 1
+ﬂG(1)mnm AV AV AP AV 4 EG(O)mnpthm AV AP AVIA

where @(5) is defined by (B.4) For the two-form we define
na a a m L oa m n
By = Blgy + Blym AV™ + 5 Bloymn?™ AV (3.21)

ITa a a m 1 a m n 1 a m n
H(g) :H(3)+H(2)m/\l/ +§H(1)mn/\1/ AV +6H(0)mnpy A% /\Vp

and similarly for the three form field strength with flux 7/{\‘(13)

~

a a a m 1 a m n 1
H(g) = H(g) + H(2)m AV + §H(1)mn ANV ANV + —

6
The reduced field strengths and Bianchi identities are given in appendix A. The reduced

Hoymnp?™ ANV AP (3.22)

mnp

theory has scalar potential

1 _
V = _562(ﬁ ) (gmngpqgtsfptqusn + Zanfqmpfpnq)

1 B .
_Ze 108 a)pgmngpqgtsglkgljG(O)mptliG(O)nqskj
1 45—
B 56 6@ a)spgmngpqgts]Cale(IO)mptHl()O)nqs (323)

3.3 Gauge symmetry

In this section the gauge symmetries of the IIB theory reduced on an identified group
manifold X with flux described in the previous sections are investigated. The presence
of the Chern-Simons term in @(5) leads to a gauge algebra with a far more complicated
structure than seen in (R.13).

3.3.1 Three form anti-symmetric tensor transformations

The antisymmetric tensor transformation §(4) — §(4) + dK(g) leaves the field strength @(5)
invariant and is generated by the parameters

Ay = D)+ Am AV + SA@mn AV AV + ZA g™ AV AV (3.24)



Gauge transformations with respect to each component of K(g) are generated by dx (A(s)),
Ox (A2 2m )> 0x (A(1ymn) and 6x (A(g)mnp)- The generators of this transformation are defined
as 0x (A) and their action on the reduced potential is

Sx(A)Swy = dA) — Agym A F™
3x (A)S(3ym = DAgym + Arymn A F"
Sx(A)S2ymn = —A@pfinn® + DA@ymn — AoymnpF?
0x (M) S1ymnp = OffinpAv)gt + DA©)mnp

6X(K)S(O)mnpq = _Oirilnqu(O)tsl (325)
where constants O%np and Oﬁ,fblnpq are defined as

Ogrinp = 35me mD]t
Ol;rsLlnpq = 65[mt6nsqu}l (326)
3.3.2 One-form anti-symmetric tensor transformations

Consider the symmetry generated by the gauge transformation
Oy (M) Blyy = dy (\)Blyy = dX)) (3.27)

The three form field strength H( 5) is manifestly invariant under this transformation, but

invariance of the five form G( 5) requires a compensating transformation from S( 4)- The
self-dual five form field strength is

~ q 1 na b a »b
We define the effect of the infinitesimal transformation 5y(/)\\) on §(4) as that which ensures;
5y(3\\)é(5) =0, i.e.
WA _ 3 nb a b _
sy(NGs) = d <5y(A)S> 2eab (d/\( |y N dBly — 2M%) A dA(1)> —0 (3.29)

Integrating this equation gives an expression for the gauge transformation of 3\(4);

A~ A~

1 _ - ~
6y (NS = —5¢a (dN) A By + 2305 A M) ) +dAg) (3.30)

where A3) is an arbitrary 3-form, which we shall set to zero. The gauge parameter and its
exterior derivative are

Ay = A+ Aom”
a a a m 1 a m n
ANy = Xy = Ny F™ + DXy AV™ = 5 Ny frun V™ A v (3.31)
Substituting (B-31)) in (B-3(), the one-form gauge transformations are

5 1 a a m b 1 a b m n
(5}/()\)5(4) = 5 (d}\( ) (O)mF ) VAN B(2) - éﬁab)\(l)anp NATNA" A Ap
N 1 n 1 a b n
5Y()\)S(3)m = —gﬁab (d}\( ) (0) F ) N B(l) §€ab)\(l)anp ANA"A Ap
1

1
—§EabDAl(10)m AN B€2) 6€ab>\(0) nquAn AN AP N Al

— 10 —



N 1 a a a
5Y(A)S(2)mn = _56(11) (d)\(l) — (0)pr) B?O)mn — Eab)\(l) VAN anpbAp

1
+— Eab)\ fmn EabD)\( 0)[m A Bg)l)n} — Eab)\((lo)[mMn]quAp A Al
~ 3
8 (N)Symnp = —€atAyyMannp' = 5€as DX{o) (i Bloyp) = 3€ab Ny Mg A”
3
+5 Eab)\ f[mn B(l)\p}
6y (N)S(0pmnpg = 6€ab>‘(0)tf ' Bloypg) — 4€abNoym Mipg)” (3.32)
and for the two form
oy (V) Bfy = d*?) — Mo ™
6Y()\)B?O)mn = - (0)pfmnp (3.33)

3.3.3 Right action of the group manifold

X = G/T inherits the right action of the group Gr on G. The calculation of how the
reduced fields transform under Gg is somewhat involved and only the results are given
here. Details of the calculation may be found in appendix B. The right action gives

1 1
57(w™)S(y = Zeamenpawag’Q) AA™ A AT — ﬂmm,,thwn A A" A AP A A
1
(52(wm)5(3)m = S(g)nfmpnwp + Zeaanpqaqun N AP A B?l)m
1 1
5 €ab My W A A By + EKmnpthtA" A AP A A9
1

5Z(Wm)5(2)mn = 25(2)[m|pf‘n]quq+ _eabMpqtathp A\ AqBé)O)mn + €apMppg“wP AT A Bfl)n

1 1
+2eamem, w B(z) KmnpthtAP A A9

m 3 a 3 a
5Z(W )S(l)mnp = 35(1)[mn\qf\p}tqw + §€amenq Wqul)p - §Eameqt WtB?())npAq
+KmnpthtAq
oz (wm)S(O)mnpq = 45(0)[mnp\tf|q]stws + 3€abM[mn|taBE)0)|pq]wt - Kmnptht (334)

3.3.4 Gauge algebra

Using the results of the previous sections, the full gauge algebra of the compactified IIB
theory is

[62( ) 6Z ( )] = 6Z (fnpmwna)p) - 5X (Kmnpthqa)t) - (5X (Kmnpthqa)tAp)
ox <%Kmnpthqm" A AP>
1
—0x <6Kmnpthqthm A A" A AP)
=0y (Mppnp®w"@P) — oy (Mppnpw"@P A™)
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] = 0x (A@ynfmp"w”)

] = 5X (A(l)mpfnquq) - 5X (A(l)npfmquq)

} = 0x A(O)manptqwt) +0x (A(O)nqumtqwt) +0x (A(O)pmqfntqwt)
] = —0x Eamenpbwp)\l(’l)) —0x (Eamenpawp)\l()l) VAN An>

1 b

§€amenpawp)\(1) VAN A™ VAN An>

X
[0y Ny 02(™)| = 8y (Noynfmp"”) = 0x (3€a\fgym Mpe'"?)

All other commutators vanish. This gauge algebra contains a Lie algebra subgroup. A
naive guess for the Lie algebra is

[Zma Zn] = _fmanp - anpaYap - Kmnpthpqt
[anp, Zq] _ 3fqt[anp}t
[Yama Zn] = fnmeap - 3€aanqumeq (335)

with all other commutators vanishing. As in the eleven dimensional supergravity case [[L],
the Jacobi identity for this algebra fails to close and a truncation of the set of generators
must be considered. This is a consequence of the reducibility of the gauge transformations.
It will be shown in the examples of section 3.4 that the irreducible gauge transformations
correspond to the irreducible representations of the gauge group. Consider for example the
slightly simpler case where M,,,,,* = 0 then algebra (B.35) reduces to

[Zma Zn] = _fmanp - Kmnpthpqt
[anp,Zq] — fqthnpt + fqthmnt + fqtnXpmt (336)

The triple commutator for Z,, is

[[Zma Zn]y Zp] + [[Zny Zp]7 Zm] + [[Zpa Zm]a Zn] = 3Kmnp[q\tf\sl]thSl
= Kunpjt Ol X £ 0 (3.37)

where the constants Ogmpt and Hgtmp are

Ogrlznp = 347 [mfnp}t
1
™ = S0t £ (3.38)

qt
We see that the commutators (B.3) do not satisfy the Jacobi identity and is therefore not
a Lie algebra. The apparent non-associativity of (B.3d) may be understood by considering
the following example. For simplicity consider the case where the group G the identified
group manifold is constructed from is chosen to be semi-simple. It is useful to decompose

- 12 —



the generator X" as®
Xmnp — xmnp 4 ng"qut (3.40)
where O?,fmp)N( mnp — (0 and fnpm)N( " = (), such that O?,fme mnp — X4t The algebra

[Zma Zn] = _fmanp - Kmnpqt)zpqt
[)Z'mnp,zq} = 3f, Xl (3.41)

satisfies the Jacobi identity and is a Lie subalgebra of the algebroid (B.35). Of course, the
full symmetry algebra (B.39) satisfies the Jacobi identity, but is not a Lie algebra. It will
be shown in section 3.4.2 that the action of X™" on all potentials is trivial so that the
non-trivial action of the antisymmetric tensor transformation is generated by XM alone.
Adding in the three form flux M,,,," and allowing the twisted torus to be non-semi-simple,
the symmetry algebra contains the Lie algebra

[Zma Zn] = _fmanp - anpaYap - Kmnpqt)zpqt
[&me, 2, = 3fdm Zo

Yo", Zn) = fnmeap - 3€aanqujZ'mpq (3.42)
where X™"P satisfies
O%anmnp =0 ananmnp =0 (343)

These two constraints are required in order for the Jacobi identity to be satisfied. The
first is simply a generalisation of the decomposition in (B.40)) for non-semi-simple G. To
understand the second constraint M,,,* X™"’ = 0 consider the transformation of the
scalar field
N l
dx (A)S(O)mnpq = _Oirinqu(O)tsl (344)

and now using the decomposition
A(O)mnp = K(O)mnp + anpaK(())a (3.45)

Under the anti-symmetric tensor transformation generated by the parameter anp“K(O)a
the scalars S(g)mnpg are invariant

0x (R)S(0)mnpg = ~OhmpgMisi“Ao)a

= _6f[mnlMpq}laA(0)a =0 (346)
where the last equality is a consequence of the flux integrability condition (B.17). Therefore
the symmetry with parameters A g), and A gy, leave the scalar field S(g)npq invariant and
drop out of the symmetry algebra altogether, in accordance with the Jacobi identity above.

SConsider the further decomposition, Xt X9t fsqt)?s, where fmnp)?m" = 0. The action of H:;"p

projects out the X® contribution, since
Hmnpj\(-'—qt Hmnpj\(:qt l [np m]tj‘(:s _ Hmnpj‘(-'—qt 3.39
qt — Mg + 2f c s = g ( . )

Therefore, for our purposes, this second decomposition need not be explicitly stated, except to note that
fmanmn =0.
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The naive algebra (B.35), with generators Ty = (Z,, X™,Y,™), is not a Lie algebra
but, as we have seen, there exists a truncated set of generators TM = (Zm,)z mnp Uy, m)
which do generate a Lie algebra. Similar observations from various flux compactifications of
ten- and eleven-dimensional supergravity have been made by many authors and it has been
shown that free differential algebras [[[§, [[9] have an important role to play in understanding
the algebraic structure of the reduced theories. Indeed, the algebroid (B.37) contains a free
differential algebra which can be identified as the algebra (B-3§). In particular, in 0, P]
it was pointed out that, in order for the free differential algebra that arises from such
reductions to give a Lie algebra, certain additional constraints must be placed on the
structure constants such that the algebra is associative. Following [0, R, one would
be tempted to impose the constraint K,p[q) f|8”t = mnm'tOéil = 0 on the structure
constants in (B.39). It is possible to find physical configurations in which this condition
arises naturally; however, from the above discussion and the examples presented in section
3.4 we see that such a condition is not necessary here. The component X™n of the generator
which is responsible for the apparent failure of the Jacobi identity does not act on any
physical field in the theory and so the action of the generators, restricted to the physical
fields, ensures that the Jacobi identity is satisfied on the space of fields. In other words, the
generators Ths and Ty have the same action on the fields of the theory. Further examples,
as applied to compactifications of eleven-dimensional supergravity, may be found in }

3.4 Examples and symmetry breaking

In this section the symmetry breaking down to a linearly realised subgroup that is generic
for any solution shall be discussed. For vacua with vanishing scalar expectation value,
this is the complete breaking, but for non-trivial scalar expectation values there will be
further breaking through the standard Higgs mechanism. The examples considered in 3.4.2
and 3.4.3 are the two extreme cases, one where the fluxes vanish and the reduction is the
standard Scherk-Schwarz one and the second in which the structure constants f,,,” vanish
but the fluxes do not. In the following sub-section symmetry breaking in the gravity sector,
i.e. the sector described by (R.7) is discussed. This symmetry breaking is generic for any
such theory.

3.4.1 Symmetry breaking in the gravity sector

The breaking of the local Gg symmetry by a choice of vacuum is easy to analyse in the
Scherk-Schwarz reduction. The metric transforms in the bi-adjoint representation

5Z (w)gmn = gmpfnquq + gnpfmquq (347)

These transformations are only isometries for the cases where the metric is invariant
87(w)gmn = 0, i.e. the frame directions o7 for which

gmpfme + gnpfmqp =0 (348)

are isometric and the generators Z; generate isometries of the metric g,,, mediated by the
gauge bosons A?. All directions 9 for which

Gmp frg” + Gnpfmg” # 0 (3.49)
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correspond to symmetries Z; which are broken by the choice of vacuum. The gauge bosons
A9 of these broken symmetries have mass-like terms in the Lagrangian arising from the
kinetic term %Dy, A Dgpq of (R-7)

L=~ (g™ gV fni? Fus? — fim™ fin™) # AN A5+ - (3.50)

If the metric g.,,, acquires a vacuum expectation value g, then this becomes a mass term
for those graviphotons which are mot associated to isometries of the frozen metric Gmn,
through the Higgs mechanism

1 ; :
o= My e A RA 4 (3.51)
where the mass matrix M;; is given by

Mts - 2( pq mtpfns - ftmnfsn ) (352)

A vacuum in which the scalars have the expectation value g,y = Mmn, the (bi-invariant)
Cartan-Killing metric (B.56) will be invariant under G'gr while any other expectation value
Jmn Will break the gauge symmetry to the subgroup preserving g,-

3.4.2 Reduction on an identified group manifold with semi-simple right action

The reduction on X = G/T" where G is s any seml—smlple group is considered. All fluxes are
taken to be zero and therefore C( 4 = S( 4) and B( b = ( ) The gauge algebra in this case
is a Lie algebra

[Zm7Zn] = _fmanp
anp’ Z,] = 3f t[anp]t
q q
Y., Zy) = frp"Ya? (3.53)

with all other commutators vanishing. This algebra generates the group G x U(1)? where
q=d+ (g) which is broken to the linearly realised subgroup Gr x U(1)? by any vacuum
of the theory as will be shown.

For the purposes of this section, the one-form antisymmetric tensor transformations
are chosen to be

~

1 ~ .
5y()\)5(4) = _§5ab)\[(11) A H€3) (354)

where 7-7?3) - H (3)° This choice is related to that in (B.30) by a choice of the arbitrary

parameter A(z). The non-linear gauge transformations are
5Bgo)mn = —/\‘(lo)pfmnp +...
3S@ymn = —ANoypfmn’ + ...

3SWymnp = 3Nl fup +
3S(0)ymnpg = —OM©)fmn]tSpg’ + - (3.55)
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where + ... denote linear terms. On a semi-simple identified group manifold the Cartan-
Killing metric

1
Thmn = §fmqunqp (3.56)

n

is non-degenerate and invertible. The inverse metric ™" may be used to define f,,"P =

n"™ fmg”. These constants may be viewed as maps fyn?&y — Emn and f,"""Empn — & for
some antisymmetric &mn... = E[mn..]

d d

2

F:RERG) 1 RE) L Re (3.57)

and satisfy fp,,9f,"" = 20,,". It will also be useful to recall the definition of O%np and also
to define the constant ITj;™" as

O%np = 35me mD]t

mn, 1 m n
™ = 553 fiv! (3.58)

These constants may be viewed as maps; {mnp — Omnp[qﬂgqt and & — H[mn]pqtqut, or

more abstractly as
d d d d
2 3 3 2

0:RG - RrRE)  1:RE) - RE) (3.59)
Note that these maps are not inverses of each other but satisfy the identity
1
H[mn]tSZOtsl lpa] = Smn?? — §fmntftpq (360)
We also define constants Omnpqts’l and II™"P9; | as

Omnpqt&l — 65[mnt8qu}l

1
Iy, ™"P = §6ts[mnflpq] (3.61)
which may be thought of as maps defined by Opnpg™U&q = Ennpg and
Hmnpq[ts’l}ftsl — Smnpq
O: R(g) — R(i) 11 : R(i) — R(g) (362)
and satisfy the relationship
H[mmp]ijklOijkl[qt’S] = 5mnpqt8 - Omnp[ij]n[ij]qts (363)

A number of other useful identities that these constants obey are collected in appendix A
of [[l0]. The following identities are also useful

D2£m = fmnpgpFn
D2§mn = (Omnpqt - 5qumnt) Sthp (364)

The potentials S)mnpgs S(1)ymnps S@)mn and Sz, take values in the (Z), (g), (g) and d
dimensional representations of SL(d;R) respectively. In order to understand the possible
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field redefinitions that are required to remove the non-linear group actions, the gauge
parameters must be decomposed into these representations. The Ay, can only take
values in the d representation but we may decompose A1)y, and Ay, as

Aymn = Maymn + fmnp/~\(1)p (3.65)
and
A(O)mnp = A(O)mnp + Omnpth(o)qt (366)

where K(l)mn and K(O)mnp satisfy”

fpmnK(l)mn =0 HqtmnpK(O)mnp =0 (367)

In terms of these parameters the transformations (B.29) are

5x(A)S(y = dAz) — Agym A F™
6x(0)S@m = D (Aaym + DRy + Koy F™) = (DRt = Aaynn ) A F"
0x (M)S@)mn = D (7\(1>mn - DT\(O)mn) — Mgy
= frnn <A(2>p + DRy + Koype F q)
5x(0)Smap = ~DRoymnp + Offny (PR1yat ~ Kty
5x (M) S(0)mnpg = —Ohmpg0)ist (3.68)

The goldstone bosons of the broken symmetries (B.55) are given by

1
X(oym = 5Im™ Blomy
X(0ymnp = Hmn,pthIS(o)qtsl

X(1)ymn = HmnPQtS(l)pqt

1

X@m = 5.fm""S@)mp (3.69)

These Goldstone bosons transform as

5X(A)X(O)mnp = _A(O)mnp
Ox (A)X(l)mn = DA(O)mn - A(l)mn

Sx(M)x@2m = A@ym + DA@ym + Aoymn I (3.70)

"As discussed in a footnote to section 3.3.4, a further decomposition K(O)mn = K(O mn + fmnpx(o)p
(where f,""A(oymn = 0) is redundant since the parameter A(g), is projected out in () due to the
identity Omnp® fyt° = 0. We may therefore neglect K(O)p and enforce the constraint f,""Agymn = 0

without loss of generality.
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One may therefore define the following (5y()\‘(’0)) and 0x (A©ymnps A(1)ymn> A(2)m)-invariant
potentials
Sy = S = X@m N F™

S 1 a n

S@Eym = S@ym — §€abX(o)mH€3) = Dx@ym + X0)mn N F
§(2)mn = S(2)mn + EabX[(lo)mHg)z)n - DX(I)mn + fman(2)p + X(O)monp
v 3 o

S(l)mnp = S(l)mnp - §6abX(())mH€1)np - DX(O)mnp + O%an(l)qt

9

S(O)mnpq = S(O)mnpq + 2€abX((10)mH€0)npq - Of?ilnqu(O)tsl (371)
similarly for the B%-fields
By = By + X(oym N
Bgl)m = Bgl)m B DX((IO)m
B?O)mn = B?O)mn + fman[(l(])p (372)

These field redefinitions take the form of infinitesimal gauge transformations (even though
the Goldstone field need not be small) so the form of the field strengths are not changed
by the redefinition except to replace the potentials (B®,S) by the (B“, S ) defined above.
The gauge algebra is reduced to

[Zma Zn] = _fmanp (373)
with all other commutators vanishing, generating the group Gg x U(1)? as claimed.

3.4.3 Flux reduction on a torus

If frun? = 0, then the group G is abelian and the internal manifold (after discrete identi-
fications to compactify, if necessary) is a torus and one may take Gx = U(1)¢. With flux
K and M (“3), the gauge algebra (B.3H) has the Lie sub-algebra

[ZM7 Zn] = _anpaYp - Kmnpthpqt

a

(Y, Zn] = —3e€apMppg" X (3.74)
with all other commutators vanishing.

Non-linear realisation of the right action. As a warm up, consider the two-form
. . . m m a
sector in isolation. Viewing o™ — o™ M,,,* as a map

M : R? — RU=D (3.75)

the internal index m can be split into (m/,m), so that m labels the (d — d') dimensional
kernel of the map M, and m’ labels the cokernel, so that

Myn® =0 Myppiy® # 0 (3.76)
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Then the transformation of the BELO) scalars is

5B€0)n,p, =w" Myypp®, 5B€0)mﬁ =0 (3.77)
The transformations generated by Z, with parameters ™ are spontaneously broken
by any vacuum of the theory. For a vacuum (g,¢,K) the A™ fields have mass term in

the Lagrangian
1 T — ! !
£D = _56_4ﬁ¢§mn§quamept’GMNQS’b * At N A* + . (378)

The 2d dimensional gauge group is broken to the (2d — d’) dimensional abelian subgroup
U(l)zd_dl generated by Z; and X™ with parameters w™ and A(oym respectively. Let

P or ! oo

M™"'? be any constants satisfying M™™'P oMY = 0™ ¢6.". Then the Goldstone

fields x (o) m" are defined by

X(O)m, = Mm,n,p,aBElo)n/p/ (379)
transforming as a shift
0Bl =0 dxo" =" (3.80)

The remaining scalars are invariant, 5Bg0) = 0. The massive graviphotons are defined

mn

as A™ = A™ + dX(O)m/ and are singlets of the gauge transformations.

Non-linear realisation of the one-form antisymmetric tensor transformation.
If the four form potentials are now introduced, the one-form antisymmetric tensor trans-
formations appear as shift symmetries

OBy = Minp™? + ...
S (Wymnp = —€ab Ay Mimnp” + - - -
5S(O)mnpq = —4€ab)\[(10)manqb + Kmnptht +... (3.81)

Therefore, even on a flat torus, the presence of flux will break some of the anti-symmetric
tensor transformations generated by Y. The gauge bosons of symmetries with parameters
)\((IO)m and )\?1) are B&) and B&)m respectively and some of these potentials become massive

by the Higgs mechanism. As in the flat torus case above, one may define constants M mp
such that anpr mnp - — §,% such that the goldstone one-form X(1)a defined as

X(a = S(l)mnpﬁmnpa (382)

which transforms as dx (1), = eab)\l(’l) + ... The S(g)mnpq transformation in (B.81) may be
written as
5S(O)mnpq = _4€ab>\?0)mM£pq + Kmnptht + ...

= —Runpg' a Ny + Kmnpgtw + - .- (3.83)
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where it is useful to define the constant Rmnpqta = 4eab(5t[mM b This transformation

npql’
may be written as

a Ry, 2ta
5S(0)E = <_>\(0)t wt) <K Pa > + ...

= a(O)MtME + ... (3.84)
where the index M =1,2...3d so that
ot = ( Moy =Mopm &™) (3.85)

and the index ¥ = [mnpq] = 1,2... (Z). Treating tMy, as the map
d
4

t: R - RA) (3.86)

the index M may be split into M = (M’, M) where M’ and M label the cokernel and
kernel of the map ¢ respectively. A basis may then be chosen such that the constant tensor

tM
tM' sy
My = < > 0) (3.87)

y, i1s written as

0 O

The choice of basis is such that there exists an inverse = 5y where tM s> vy = 6M'

and t= yptM y = 6% 5. The Goldstone boson for the symmetry with parameter a@ymr 18

Xy == 10 S(oys (3.88)

It is useful to combine the generators Z,, and Y_" into the doublet

ym
™ _ < iy ) (3.89)

so that 6 = apTM. Those symmetries generated by ™ (with parameter o;) are pre-
served whilst those generated by TM’ (with parameter «j;/) have non-linear realisations
and are always broken by a choice of vacuum of the theory. Gauge singlet fields may
be defined

5(0)2' = Sy — X(O)M’tMIE’

g(l)mnp = S(l)mnp + X(l)aanpa

B?O)mn = B(O)mn - X(O)panpa (390)
Both the H‘(ll)mn and G(1)mnpq field strengths contribute to the graviphoton mass term
where G(1)mnpg = mnptht + ... and H?l)mn = Mppp®AP + .... For a given vacuum

expectation value of the scalars g, K and @, the mass-like term in the Lagrangian due to
these field strengths may be written as

1
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where the components of the mass matrix are

g oy 1. =
M = e4ﬁ<pgmtgnsgplqu <e4(a B)SDKmnpqutslkj + _glquklcameniaMtsjb>

d
an = _2646¢gmtgnsgplqu64(a_6)¢6abMtslaKmnpqi
MM = 4e4ﬁ¢§mt§n8§pl£_]qkEacebdenpchtsd (3.92)
and
A™
Al = (3.93)
() <B&m>

For a given vacuum expectation value of the scalar fields the diagonalisation of the ma-
trix Map gives the (mass)? spectrum of the Aé) potentials. In general, with non-trivial
internal geometry some of the S(1y,np gauge fields will become massive, corresponding to
the breaking of symmetries generated by X™"P. Upon symmetry breaking by the choice

of some vacuum (g, @, K), the general effective theory will contain massive one-forms and

massless gauge bosons that are linear combinations of the B&)m, A™ and S ymnp-

4. Compactifications with S-duality twists and F-theory

Consider a D + d + 1 dimensional field theory coupled to gravity. The theory is reduced
on a d-dimensional torus 7%, with real coordinates 2% ~ z% 4+ 1 where a = 1,2...d. This
produces a theory in D + 1 dimensions with scalar fields that include those in the coset
GL(d,R)/SO(d) arising from the torus moduli. Truncating to the z® independent zero
mode sector, this theory has a global symmetry U that contains the GL(d,R) arising from
diffeomorphisms of the d-dimensional torus. In the full Kaluza-Klein theory this is broken
to the GL(d,Z) that acts as large diffeomorphisms on the d-dimensional torus similarly,
in string theory U is broken to the discrete U-duality subgroup U(Z). The action of U on
fields 1) of the reduced theory in some representation of U is denoted as 1) — ~[¢)].

The duality twist reductions of this theory describes reduction on a further circle with
periodic coordinate y ~ y + 1, twisting the fields over the circle by an element of U using
the ansatz [T, B3, 4, [[(7]

P, y) = ylY(a")] (4.1)

where x# are the D non-compact spacetime coordinates. Consistency of the reduction, in
the sense described in the introduction, requires the reduced theory to be independent of
y, which is achieved by choosing the form of v to be

Y(y) = exp (My) (4.2)

for some matrix M in the Lie algebra of U.

The map v(y) is not periodic, but has monodromy M(y) = v(0)y(1)™* = eM in U
and the physically distinct reductions are classified by the conjugacy class of the mon-
odromy [RJ]. In the full theory in which all massive modes are kept, U is typically broken
to a discrete subgroup U(Z). In order for ¥(z,y + 27) = M¥(z,y) to be well-defined, the
monodromy M must therefore be in the symmetry group U(Z) [, BF].
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If the monodromy is in the geometric GL(d;Z) sub-group then the reduction may
be viewed as a specific class of the identified group manifold reductions of the previous
sections. In this case the identified group manifold really is a topologically twisted torus
fibration. If the monodromy is more general then the reduction cannot be given as a purely
geometric construction as the monodromy (or transition functions between patches) may
now be S or T dualities. For example, if the monodromy is an element of the T-duality
group, then the string theory is only defined in a certain patch and we must consider the
identification of a particular string theory as only possible locally. Globally, this picture
must be generalised to include the string theory and its T-dual. In particular, the transition
function would invert the radii of the circles on a torus and generate non-trivial B-fields -
clearly a non-geometric operation. The introduction of Ramond fields and their associated
D-branes on a background with a monodromy in the factorised duality subgroup of O(d, d)
leads to further startling features [[LT], P§. For example, the dimension of the D-brane would
not be globally defined as the transition function increases or decreases the dimension of
the brane as one moves between patches [Rd, B7]. Another example is that of string theory
on a Calabi-Yau manifold [[[§]. Here the backgrounds are permitted to have transition
functions which are mirror symmetries. It should be noted that truncation to the lowest
modes on a Calabi-Yau is not consistent so the detailed analysis in that case is expected
to be more complicated.

The situation is even more drastic if the monodromy is an element of S-duality. In this
case, the perturbative string theory picture can only be used locally. In this section such
reductions of IIB supergravity with S-duality twists are investigated at the supergravity
level. Such reductions have also been investigated in [, B§).

4.1 Reductions with S-duality twists

S-duality is non-perturbative in the string coupling g5, mixing Ramond and Neveu-Schwarz
fields, and therefore cannot be given a worldsheet interpretation but there is compelling
evidence to believe that this symmetry is an exact symmetry of the full non-perturbative

theory [R9].
The reduction to nine dimensions of the bosonic sector of IIB supergravity on a circle

with an S-duality twist will be considered. The ten-dimensional IIB Lagrangian, written
in a manifestly SL(2) invariant form was given by (B.2). Consider the reduction ansatz

ds?h,, = e2*?ds?) + e*? (dy + A)? (4.3)

where y parameterises the circle direction. The duality twist ansatz (B.§), (1)) and ([.3)
to reduce the fields of the IIB theory on circle with S-duality twist are

Koy, y) = M 0@y By (e,y) = M (Bl (2) + Bly(@) Av)  (44)

where M is a twist matrix in the Lie algebra of SL(2) and M its transpose. The reduced
scalar Lagrangian is then®

Ly — iTT (xDK A DK — 36—2(a+ﬁ)wTT (M2 + MTICMIC_I) * 1 (4.5)

$We have made use of the fact that Tr(M* - M") = Tr(M - M) in the potential.
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where the covariant derivatives are

DK%, = 9;K% — (MTK + KM)%, A,
Di(K™No" = 0i(K™ 1o + (KT MT + MK™1),b 4

The reduction of the two form field strength term
1 Ira 77b
gives the low energy effective term
1 —4a a b 1 —2(« a b
EH = —§,Cab€ dap * H(g) N H(g) — glcabe 2( +6)80 * H(2) AN H(2)

where the reduced field strengths are

a a a b a

a a a b a b

_ a a b

F =dA

with the Bianchi identites

DHY =0 DH@ =0 dF=0

(4.9)

(4.10)

The self dual five form field strength, although a singlet under the S-duality transformation,

still has a non-trivial deformation in the Scherk-Schwarz ansatz coming from the Chern-

Simons terms. The five form term in the action is

1~ N
Ea = _Z * G(5) VAN G(5)

which reduces to
Lg= —%e—&w * Gz ANGs) — ie—@aww enyxen
where
G5 = dCuy — Czy NF + %eabB&) A Hiy,
Ga) = dCs) — %Eab (Bt A Hisy — Biyy A )
Finally, the Chern-Simons terms reduce to

1 . a
Lew =~ (Cooy N Hiyy N Hlyy + 200y 7 Hiyy N H) )

(4.11)

(4.12)

(4.13)

(4.14)

The self duality constraint 6(5) = *@(5) reduces to a relationship between 6(5) and @(4)

and must be imposed on the equations of motion of the reduced theory.
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4.2 Gauge Symmetry and its Breaking

In this section the symmetries of the reduced Lagrangian are studied and the symmetry
breaking and mass mechanisms involved are analysed.

4.2.1 Antisymmetric tensor transformations

In ten dimensions the three from field strength H &) is invariant under the abelian anti-

symmetric tensor transformation of the potential 5@?2) = dX?l). The four form potential
transforms to compensate for the transformation of the Chern-Simons term in the field
strength G5 as

= L, b
(50(4) = —gﬁab)\(l) A H(3) (415)
The combined transformations of the four-form and two-form potentials leave the five-
form field strength, G(s), invariant. Under the S-duality twisted reduction considered in
the preceding section, the reduced potentials transform as
a a a b a
a a a b a b
1 a b
5C(4) = —56[1{,)\(1) VAN H(g)

1 a b a b

The transformation 5BE11) =M “b/\l(’l) +...1is a shift symmetry, i.e. it is non-linear realisation
of the symmetry group and will not be preserved by any vacuum of the theory. A massive
two-form Eé) may be defined

By = By — (M~ )%DBY, (4.17)

where Bf,, has eaten Bf}, to become massive and 153“2 is a singlet of the symmetry trans-
formations (f.14). The redefinition (.17) is dependent on the existence of the inverse
(M~1)%,. Tt will be shown that that this is not always the case and that care must be
taken in defining the massive two form fields (.17). For now it will be assumed that the
mass matrix is chosen such that (M ~1)%, exists. Applying the field redefinitions

> 1 - a (&

0(3) = 0(3) + §€“b(M 1) CB(l) A H&)

> 1 - a (&

0(4) = 0(4) + §Eab(M 1) cB(l) A Hg)g) (4.18)
the field strengths become

N " 1 ., .
G(5) = dC(4) — C(g) ANF + §6abB(2) A DB(2)

v 1 9 9
Gy = dCs) — 5 Mar By A By,
Hyy = DB,
Hy = —M*Bly, (4.19)
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where Myp = €(q|cM p)- B&) is eaten by Eé) and completely drops out of all of the field

equations. The Cu(3) and 6(4) fields remain massless and charged under the abelian gauge
symmetry generated by the transformations

(5C(3) = dA(Q) 50(4) = dA(g) (420)
The Lagrangian of the reduced theory is then
1 1 1
Log=Rx1— 3 xdp N dp — 562(5_0‘)“0 x FANF + ZT?‘ (*DIC/\DIC_I)
1 g, 1 (o0
_Ze 8o G(g,) A\ G(5) - Ze (2a+B)p 4 G(4) A\ G(4)
1 —4da a » 1 —2(« a e 5
— 5 Kave 1%« DBy A DBly) — 5 Kave 20402 M Mg+ By A By,
L (C A HE A Hbyy +2C 4 A HY A HY, )
40\~ B3) 3) ®3) 4) 3) 2)
1
—ge NPT (MP 4+ MIKMET!) 1 (4.21)
In some cases M%, may not be invertible. An example is the reduction with parabolic

0m
M, = <0 0) meZ (4.22)

twist where

This mass matrix has no inverse so one must be careful in defining the massive two
form (4.17). For such non-invertible matrices one may always choose a basis such that

M 0O
e (29) o

In this basis the potentials are written as

!/ !/
B, = (% ) B, = (% ) (1.24)
By B(a)

It is then possible to identify a massive two-form

the mass matrix takes the form

By = Blyy — M™' DB, (4.25)
whilst B(l) and B(z) remain massless.

4.2.2 Internal diffeomorphism and fixed points of the twist
In addition to the antisymmetric tensor transformations, the reduced theory has a U(1)
gauge symmetry originating from diffeomorphisms y — y—w(z) along the compactification
circle. The reduced fields transform as
0A = dw
b
b
ORab = —2K (g M€ pyw (4.26)
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where w = w(x). For a given expectation value of the scalars (KC)q, = Kgp this symmetry
will be broken unless

<5,C>ab = —ZK(Q‘CMC‘IJ)W =0 (4.27)

If this is the case, then the graviphotons are massless, as may be seen from the DK term

in the Lagrangian ([.21)
1 — ——1 L5
where the mass p is given by
2 _ 2 tZ AL
p=Tr (M + MKMEK ) (4.29)

This p? term is proportional to the scalar potential of the reduction and therefore the
graviphotons will be massless at the minima of the potential. The minima of the potential
for such reductions was studied in [[L] where it was shown that the potential is zero only
for elliptic twists, an argument that is reviewed here. The moduli matrix may be written
in terms of the SL(2)/SO(2) zweibein V as Koy = V,%505V?, where

V= oo (1 Co) > (4.30)

and «,f = 1,2 are SO(2) matrix representation indices. The vanishing point for the
potential and graviphoton mass occurs when the complex structure has the vacuum value
(V) = Vy such that the twist matrix M is equivalent to a matrix R in the Lie algebra of
SO(2) up to a conjugation by Vg

M =V, 'RV, (4.31)

This may be seen as follows. Setting K = ViV and M = Vo 'RVy the potential may be
written as [[L5]

Vop?= %Tr (Y?) (4.32)

where Y = R+ R!. Since R is in the Lie algebra of SO(2), Y = 0 and the potential vanishes
and the graviphotons are massless. As recognised in [[F] this is to expected as such a choice
of vacuum is a fixed point of the twist action and therefore will have no effect on the field
theory. For this choice of scalars (4.27) can be written

(O ap = —(V0)a"Ras(V0)’s — Vo)™ Rap (Vo) s
= —Q(Vo)aaR(aﬁ) (Vo)ﬁb (4.33)

The right hand side of ([.3J) vanishes as the generator R,p of SO(2) is antisymmetric.

Therefore a choice of vacuum will generally break the U(1) isometry group unless the twist
is in the elliptic conjugacy class.
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4.3 Non-geometric twists and F-theory

F-Theory is formally a twelve dimensional theory which when reduced on T2 gives a theory
whose truncation to the massless sector gives the IIB supergravity. The S-duality of the 1IB
theory is then described geometrically as the mapping class group of the T fibre for which
the axio-dilaton 7 = C(g) + ie™? is the complex structure. This, apparently redundant,
description of the IIB theory becomes useful when one considers compactifications of F-
Theory on spaces that have a T2 fibration that is not trivial [B(]. The relevance of this
picture here is that in some cases it may be used to give a geometrical interpretation to
otherwise non-geometric duality twist backgrounds.

Consider for example the SL(2,Z) U-duality of the IIB string theory [25]. Reducing
from 10 to 9 dimensions on a circle with monodromy in SL(2, Z) investigated in the previous
section and also [23, P4, B1, BZ). As the SL(2,Z) symmetry is not geometric, this cannot
be realised as a compactification in the conventional sense. However, it can be realised as
a ‘compactification’ of F-theory on the twisted torus corresponding to a 72 bundle over S*
with SL(2,Z) monodromy [RJ. For example, the case of an elliptic twist with vanishing
potential discussed in the last section may be thought of as a reduction of F-Theory on an
orbifold [[L].

This further extends the notion of a non-geometric background to a non-perturbative
background where one must cover the internal circle with at least two patches and where the
transition functions between patches are S-dualities. If these Scherk-Schwarz reductions lift
to solutions of the full M-Theory one must accept that, even at weak coupling, perturbative
string theory can at best describe only the local physics of such solutions.
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A. Bianchi identities and field strengths

The reduced field strengths are

a a a m 1 a m n

a a a n, Lo n
H((ll)mn = DB?O)mn + ffz;mBELl)p + Mﬁ@npAp
a _ a q a
Hoymnp = 3B0)pmla ) T Moy (A1)

and for the five form field strength

m 1 m n
Gi) = dCuy + Cigym N F™ + menpth AA" A AP A AT A A

1 a b 1 a b m n
+§EabB(2) AN H(g) - EEQI)M B(2) AN A AN A AN AP

mnp
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1
57 Kmnpgt A" N AP N AT N Al

1 a b 1 a b
+§€abB(2) A H(2)m — §€abB(2) A H(3)

Guym = DCaym + Caymn N F" +

1 1
+_€abMa B(l) /\An/\Ap/\Aq - _EabMa B(2) /\An/\Ap

6 qnp mnp
G(3)mn = DC(Q)mn + C(g)pf%n + C(l)mnp N FP + EKmnpthp A AN AL
1 a b 1 a b 1 a b
+5€aBoymn (s + 5t Bliym N Higpn + 5€aBiay N Hizymn

—ea (Mqth(o)mnAq AA' MG, Bh L AAT M,

b
Bly) A A?
G(2)mnp = DC(l)mnp + C(O)mnquq + —Kmnpthq A Al

3 na 3 b 3 b
+§€ab3(2>3<o m\qf inp] T € Bloymn L (2p — ‘EabBu)m N Hyp

3
G(l)mnpq = DO(O)mnpq + 60(1)pqtffnn + Kmnpth
+3¢at Boymn H (1)pg + 6600 B{1ym By it Sipg
Bly)pg N A" — 4M B(l)q)

mnp

—eg <6M

mnt
G(O)mnpqt = _2C(O)Spqtfmn + Kmnpqt
+306abBE10)m’fLBE)O)[;D|Sf|f]ﬂ — 106(1mean( ) (AZ)

where the Gi covariant derivatives are

D¢(p)m1m2...mq = dw(p)mlmg...mq + (_)pw(p)[mlmz...mqfl|nf|mq]pn N AP (A3)

The reduced Bianchi identities for the self-dual five form are
dG 5y — Gaym NF™ = %eabH?g) A His
DG aym — Ggymn AN F" = eavH{gy A H{y,,
DG (3ymn — fm"pG(4)p = Gymnp N FP = eap (H((l?)) A Hl()l)mn + H?Z)m N Hé)n)

DG (2)mnp + O%nPG(?))qt — Gymnpg N F? = €ap <H?3) NH{ - 3H((12)m A H&)np)

(0)mnp
S a b
DG(tymnpa = OrtngaCiayst = Giommpa A F* = €ap (s Hioyupe) + Moy N Mooy )
slig a
DG(O)mnpqt + Omripth(l)slij = 1O€abH(1)[mnH(0)

pqt]
lijkh a
Om,]npqtsG(O)lijkh = 10€abH(0)[manl()0)qt8} (A4)
and for the three form

dH(g) —i—H?) ANF™ =0

DH((I) +H(1)mn/\Fn :0

DH{ymn + Hopmnpt™” = 0
DH? 0)ymnp = =0 (A.5)

— 928 —



B. Right action of the group manifold

The identified group manifold X = G/I" inherits the right action of the group G on G.
The calculation of how the reduced fields transform under G is somewhat involved and
it is helpful to clarify the discussion by first considering the simpler case of the two form
transformation. The action of G on the two-form is generated by the Lie derivative L,

Ls(Bly) = Lu(Bly) + Lu(wy) =0 (B.1)

where w = w(x) is the parameter associated to the right action on the group manifold G.
Using the fact that the Lie derivative may be written £,, = 1,d+du,, L,(v™) = —v" frp"wP

and choosing the convention 1,0™ = —w™, the transformations in (B)) imply
na a 1 a m n —a
where E}) = 1,y B\&) is in addition transformed by 5(E)y§&) = —dE?l)' defining a

gauge transformation §z(w) which is independent of the internal coordinates y*

~ 1
dz(w) By = §anp“wpam Ao" (B.3)
ie.
0z(w)Bly) = Lu(Bly)) — 0y (E)Bfy) = =0y (E)B(y, (B4)

where the second equality comes from the fact that the E&) is invariant under general

coordinate transformations generated by L. The reduced components of [5’\?2) transform as

1

67(w) By = 5 Moy P A™ A A"
62(w) By = Bty fip" 6" — My A™

The corresponding transformation for the four form potential requires more care as the flux
for this potential (B.19) is more complicated. The symmetry transformation of interest is
that generated by dz(w) rather than L, and are defined by L, (G5)) = 0, which requires
the four form potential to transform as

~

dz(w)Cy = ﬁw(CA(4)) - 5Y(E)€(4)
= =0y (2)Cu
1, =
where the dy (Z) transformation is only defined up to the arbitrary total derivative dys)

and it must be stressed that CA(4) is invariant under the diffeomorphism transformation £,
but not §z(w). Combining (B.12) and (B.4), the symmetry transformation of interest is

~

1, - 1 -
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It will be shown that, although Ewg is not y-independent, § Z(w)§ is. The transformation
6z (w)dwo gy = Lo(dw(yy) will be calculated first.” Consider,

L, (’C(5)) (1d + duy,)

120
1
— —ﬂK[mnpq‘tfmstwsam Ao AoP Ao? Ao
1

—ﬁKmnmtdwt ANa™ Ao AaP N o? (B.8)

Kpnpgto™ N Ao Aol A ot

and the transformation

a 1 a m n —a
Lo (w(y)) = _ime wPo™ N o™ + d=()) (B.9)

Putting together (B.13), (B.g) and (B.9) the transformation of dw 4 is therefore

1 a
ﬁw(dW(4)) =L, <_§5abw(2) A dw?z) + IC(5)>

1 1
= ——€wh (——M[mnlpawl’o’m Ao + d5?1)> A MIqts]qu Aot Aob

12 2
1 a m n
—I—Zeabw@) A Mypnpbd(wPa™ A ™) + L,(Ks)) (B.10)

which can be written as

1
Ly, (dwyy) = —dbyy — §eabdw&) A Mypnp?wPa™ A o™ + L,(Ks)) (B.11)
where
1 a 1 b p.m n —b
04y = 2 €ab@(2) A —§anp wPa™ N o™ —dE()) (B.12)

Now consider the second term in the above expression (|B.11))

1 1
ieabdw&) A anpbwpam No™ = —eap My M,

12 qt]sbwsam A" AoP Aol Aot (B.13)

Using the fact that eup My, M,

qt}sb = 6ab]w’[mn]ua]\4

qts}b, (B.13) may be written as

1
EeabM[mnpa qts}bwsam Ao AoP Aa? Aot (B.14)

and now making use of the identity 2eabM[mnp“Mth]b + 3K [mnpqli f|ts]l = 0 (B.I7) to
write (|B.14)) as

1 1

geabdw&) A anpbwpam ANo" = —ﬂK[mnpq“f“S]lwsam Ao AaP Aol Aot

1
+EK[mnp|slf‘tq]lwsam A" ANaP Aol Aot (B.15)

9Tn all the variations of the fluxes §z (w)w = Lo (w) as the fluxes are invariant under the dy and dx
transformations.
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and substituting it into (B.10), the variation of dw4) becomes

1
ﬁw(dW(4)) = —d9(4) — §eabdw?2) A anpbwpdm ANo" + Ew(,C(g)))

1
= —dby) — ﬂKmnpqtdwt ANa™ Ao ANoP Aol
1
+EK[mnp|qtf|s”twq Ac™ A AP Aot Ad!
1
=d <—9(4) - ﬁKmnpthtam Ao Aol A O'q> (B.16)
It is simple to show that, acting on the space of forms, [£,,d] = 0 and therefore the

(]

variation of w4 commutes with the total derivative so that the expression (B.14) can be
integrated to give

1
Lo(may) = —0u) — ﬁKmnpthtam N NP Ao+ dQs

1 1

= _§€“bw?2) A <—§M,bnnpwpam No™ — dEl(’l)>
1

—ﬂKmnpthtam No™ Aol Ao+ dQs (B.17)

for some arbitrary three form €2(3). Now that L, (@ (4)) has been determined, the variation
of the second term in (B.7) is considered

1 a = 1 a D 1 a n
5Z(W) <—§EabW(2) A B€2)> = —§€ab£w(W(2)) VAN B€2) — §EabW(2) A <5Z(OJ)BE)2)>

1 1 —~
= — =€ <—_anpawp0'm ANo™ + dE[(ll)> A BE)Q)

2 2
1
—Zeabw&) A anpbwpam Ao (B.18)

~

where a gauge transformation is incorporated into 6(w)§€’2) to give 6Z(w)B€’2). Putting
these results together gives

1 ~ 1 ~
52(0)) <—§€abwzl2) N B&) + W(4)> = ZEGmenpapr'm Ao A BE)Z)

1 . a1
—ieabd‘:‘(l) VAN B&) + 5@7)(2) VAN d:l()z) + dQ(g)
1

—ﬂKmnmtwtam Ao Aol Aot (B.19)

The first two terms in the last line can be written as

(O B 1 1,
§€abd:‘(1) VAN BE)2) — 5@(2) AN d:l()2) =d (56(11)‘:‘(1) VAN 6?2)> + 56(11)‘:‘(1) A Hl()g) (BZO)

and the first term in (B.2(]) can be removed by choosing an appropriate value for (1)
in (B.19) and the last term of (B.2() cancels with the §y (Z) transformation of (B.7]) to
leave the transformation

~ 1

~ 1
5Z(w)5(4) = Zeamenp“wpam Ao™ A B&) — ﬂKmnmtwtam Ao AoP Aot (B.21)
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Substituting the Scherk-Schwarz ansatz for the potentials (B.20) and (B.21]) into (B.21),
the gauge transformations of the potentials are found to be

1 1
87(w™)Sy = Zeamenp%PB{’z) NAT AT = Kppgue AT A AN AP N AT

1
5Z(wm)S(3)m = S(3)nfmpnwp + Zeaanpqaqun N AP A Bfl)m

1 1
+—%ﬂwmw%fA"AB&y+ék%mmwanAApAAq

2
1
5Z(Wm)5(2)mn = 25(2)[m|pf|n}quq+ZeabMpqtathp A AqB?O)mn—i-Eamepqaprq A B?m
1 1
—l—aeamenp“wa&) — §KmnpthtAp N A9
m 3 a 3 a
02(@™)S(wmnp = 3S(1)(mnla fipt"e" + 5 €arMung "W Blry, = 5 €ab Mimgi "' Big) o, A”
+KmnpthtAq
5Z(wm)S(0)mnpq = 45(0)[mnp\tf|q]stws + 3€abM[mn|taB€)0)‘pq}wt - Kmnptht (B'22)
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