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1. Introduction

The majority of techniques used to study the dimensional reduction of D + d dimensional

Supergravity theories toD space-time dimensions may be divided into two broad categories.

The first, and most amenable to physical interpretation, requires the higher-

dimensional theory to be rewritten in terms of the harmonic modes of some compact

internal manifold and gives rise to an infinite tower of massive Kaluza-Klein fields cor-

responding to excitations of the higher harmonics. This results in a rather cumbersome
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rewriting of the original theory and in practice only a truncation of the theory to the light-

est modes is considered [1]. The drawbacks of this approach are that the treatment of the

harmonic modes can be laborious in practice and the low energy modes that remain in

the truncated theory generally will not solve the higher-dimensional equations of motion.

Thus solutions of the truncated theory generally will not lift to solutions of the higher di-

mensional theory. This technique will be referred to as Kaluza-Klein reduction. The mass

of the modes in the Kaluza-Klein reduction are given by the eigenvalues of the Laplacian

on the internal manifold. As such the truncation to the lowest modes keeps the lightest

states whose number is given by the Betti numbers of the internal manifold.

The second approach, and the one that will be considered in this paper, is to consider

solutions of the higher dimensional equations of motion that may be given a lower dimen-

sional interpretation. This lower dimensional interpretation arises from the requirement

that the solution does not depend on the internal coordinates and generally will not in-

volve all of the fields in the higher dimensional theory. Such a truncation of the spectrum,

that solves the higher dimensional equations of motion, is called consistent although the

term is now generally applied to any solution of the full theory that is independent of

the internal coordinates, regardless of whether or not the solution arose from a truncation

of a harmonic expansion. In contrast to the Kaluza-Klein approach the effective theory

obtained may not include all of the lightest modes and the number of preserved fields will

not generally be related to the topological properties of the internal manifold.

There is some overlap between these categories and examples exist of Kaluza-Klein

truncations which are consistent. An interesting example is compactification on a torus

for which a truncation to the lightest harmonics (Fourier modes) yields an effective lower

dimensional theory. The resulting effective theory solves the higher dimensional equations

of motion and is an example of both procedures. As a counter-example, compactification

on a Calabi-Yau followed by truncation to the zero modes is not consistent in this sense.

The consistency of a reduction can often be understood group theoretically.1 For exam-

ple, in the case of a reduction on a torus discussed above, the momenta of the compactified

fields along the internal directions give rise to conserved charges in the D-dimensional the-

ory. Truncating to the zero modes in this case leads to keeping only the singlets, therefore

there can be no chance of interactions generating the modes that have been truncated out.

This truncation is therefore consistent.

Various generalisations of the toroidal reduction which are consistent (i.e. do not de-

pend on the internal coordinates and solve the higher-dimensional equations of motion)

have been systematically studied [2 – 8]. These include the Scherk-Schwarz reductions [7, 8]

and reductions with cohomological fluxes [5, 6] which yield effective theories with scalar

potentials and non-abelian gauge symmetries. These reductions may be thought of as

massive deformations of the toroidal solution.

In this paper we consider Scherk-Schwarz reductions of IIB supergravity and F-Theory

that admit a geometric interpretation2 as a compactification on a manifold X = G/Γ.

1Coset reductions appear to be an exception. There is, as yet, no systematic understanding of the

consistency of such reductions, despite the numerous examples that exist [2 – 4].
2We describe the Scherk-Schwarz solution as a compactification on X in the sense that the reduction
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Here G is a, possibly non-compact, d-dimensional group manifold and Γ ⊂ G is a discrete

subgroup acting from the left such that X is compact. The group manifold G has isometry

group GL × GR (the action of the group on itself from the left and right respectively)

which is broken to GR by the discrete quotient (see [9] for a detailed discussion), leaving

an effective theory with GR gauge symmetry. In order for the reduced fields to be globally

defined on X the Scherk-Schwarz ansatz requires the reduction ansatz to be invariant under

the rigid action of GL [9, 10]. The spaces X are known as twisted tori in the literature.

Generally X will bare no relation to a torus fibration so the terminology is misleading.

Henceforth X = G/Γ shall be referred to as an identified group manifold.3 Examples of

identified-group manifolds that are topologically twisted torus fibrations were given in [9].

This construction and its generalisation to include matter with flux is reviewed in the

following section. Section 3 presents a study of the flux compactification of IIB Super-

gravity on identified group manifolds with particular focus on the gauge symmetry and its

breaking. The Kaluza-Klein reduction has a clear geometric interpretation by construc-

tion. The consistent reductions may not always be easily identified with the truncation

of a Kaluza-Klein reduction on some manifold and it is interesting to consider the higher-

dimensional origin of these reductions. In contrast to the reduction via harmonic analysis,

many solutions generally cannot be interpreted in terms of a geometric compactification.

Many examples now exist [9 – 16] of solutions of the higher dimensional theory, depending

only a set of macroscopic coordinates, for which the internal space cannot be understood in

terms of classical Riemannian geometry. In section 4 we consider S-duality twisted reduc-

tions of IIB Supergravity. These reductions do not arise from a geometric reduction of IIB

Supergravity but may be interpreted as a compactification of F-Theory on an identified

group manifold.

2. Flux compactifications on identified group manifolds

In this section the Scherk-Schwarz reduction on an identified group manifold X is reviewed.

The coordinates of the higher-dimensional space-time are xM = (xµ, yi) where yi (i =

1, 2, . . . d) are coordinates on X and xµ (µ = d+ 1, d+ 2, . . . d+D) are the coordinates on

the non-compact spacetime. The most general Einstein frame reduction ansatz invariant

under rigid GL is

dŝ2 = e2αϕds2D + e2βϕgmnν
mνn (2.1)

where the one-forms

νm = σm −Am (2.2)

include the Kaluza-Klein gauge fields Am
µ , which have two-form field strength

Fm = dAm +
1

2
fnp

mAn ∧Ap (2.3)

ansatz is constructed from the set of globally defined one-forms on X .
3Suggested by C. Hull. Other names one might consider are ‘Cocompact Orbifold’ or ‘Coset’, but these

names are misleading as Γ is discrete and acts freely on G.
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and α, β in (2.1) are the constants

α = −

(
d

2(D − 2)(D + d− 2)

) 1
2

β = −
α(D − 2)

d
(2.4)

The left-invariant one-forms σm = σm
i(y)dy

i, where m = 1, 2, . . . d, satisfy the struc-

ture equation

dσm +
1

2
fnp

mσn ∧ σp = 0 (2.5)

which ensures that all yi-dependence drops out of the reduced theory. The integrability

condition d2σm = 0 gives the algebraic constraint f[mn
qfp]q

t = 0, and the invariance of the

internal measure under GR requires that GR be unimodular4 (fmn
n = 0).

The νm define a covariant basis for the reduction in which the one forms transform

under the local right action GR, generated by the globally defined left-invariant vector

fields Zm = σm
i∂i as

δZ(ω)yi = ωmσm
i δZ(ω)νm = −νnfnp

mωp δZ(ω)Am = −dωm −Anfnp
mωp (2.6)

Dimensional reduction gives rise to a metric gµν(x), d Kaluza-Klein one-form gauge fields

Am
µ (x), and d(d + 1)/2 scalars ϕ(x) and gmn(x), where gmn(x) is a positive definite sym-

metric matrix with unit determinant. This ansatz (2.1) is invariant under rigid GL trans-

formations, and under local GR transformations in which the parameters depend on xµ and

the Am transform as gauge fields, while the scalar fields gmn(x) transform in the bi-adjoint.

The D+ d-dimensional Einstein-Hilbert Lagrangian, reduced on a d-dimensional iden-

tified group manifold Xd, gives the effective theory

LD = R ∗ 1 −
1

2
∗ dϕ ∧ dϕ−

1

2
gmpgnq ∗Dgmn ∧Dgpq −

1

2
e2(β−α)ϕgmn ∗ Fm ∧ Fn

−
1

4
e2(α−β)ϕ

(
gmng

pqgtsfpt
mfqs

n + 2gmnfqm
pfpn

q
)
∗ 1 (2.7)

where

Dgmn = dgmn + gmpfnq
pAq + gnpfmq

pAq (2.8)

is a GR-covariant derivative.

Theories of interest to us will also include antisymmetric tensor fields. In the ansatz

of [8], the internal components Tij...k of a tensor field T̂MN...P in the reduced theory are

taken to have y dependence given only by the frame fields

Tij...k(x, y) = Tmn...p(x)σi
mσj

n . . . σk
p (2.9)

defining scalar fields Tmn...p(x) in the reduced theory, so that for example the internal metric

takes the form gij(x, y) = gmn(x)σi
mσj

n. As an example, consider the antisymmetric two-

form potential, which we write in the (GR-covariant) νm basis as

B̂(2) = B(2) +B(1)m ∧ νm +
1

2
B(0)mnν

m ∧ νn +̟(2) (2.10)

4Relaxing the unimodular condition still allows the reduction of the equations of motion, but not the

Lagrangian.
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where a left-invariant flux has been introduced

K =
1

6
Kmnpσ

m ∧ σn ∧ σp (2.11)

where K = d̟(2). The flux is closed (which requires the algebraic constraint K[mn|pf|qt]
p =

0) but generally not exact so that ̟(2) is defined only locally. Defining the algebraic

operator Q, which acts on the space of antisymmetric tensors Km1m2...mp = K[m1m2...mp],

such that

Q : Km1m2...mp → (QK)m1m2...mp+1 = f[m1m2

nKm3m4...mp+1]n (2.12)

The condition K[mn|pf|qt]
p = 0 may be written as (QK)mnpq = 0, or Kmnp ∈ KerQ. The

condition f[mn
qfp]q

t = 0 means that Q2 = 0 and we may define the algebraic cohomology

H(Q) = KerQ/ImQ. It was shown in [9] that a flux of the form Kmnp = (Qη)mnp for some

ηmn = −ηnm can be removed by a field redefinition of B and is therefore trivial. Therefore

the fluxes of interest are those in H(Q). For field strengths with more complicated Bianchi

identities dH 6= 0, then K[mn|pf|qt]
p 6= 0 and the statement of algebraic cohomology must

be suitably modified.

The field strength Ĥ(3) = dB̂(2) is invariant under the transformation δX(λ)B̂(2) = dλ̂(1)

where

λ̂(1) = λ(1) + λ(0)mν
m (2.13)

and λ(1) = λµdx
µ. The antisymmetric tensor symmetry and the GR symmetry of X gives

the infinitesimal transformations

δB(2) = dλ(1) +
1

2
Kmnpω

pAm ∧An

δB(1)m = Dλ(0)m +B(1)nfmp
nωp −Kmnpω

pAn

δB(0)mn = fmn
pλ(0)p + 2B(0)[m|pf|n]q

pωq +Kmnpω
p (2.14)

where Dλ(0)m = dλ(0)m + fmn
pλ(0)pA

n. Combining these variations with that of the

graviphoton δAm = −Dωm, these infinitesimals generate the Lie algebroid

[δZ(ω̃), δZ(ω)] = δZ(fnp
mωnω̃p) − δX(Kmnpω

nω̃p) − δW (Kmnpω
nω̃pAm)

[δX(λ), δZ(ω)] = −δX(λmfnp
mωp)

[δX(λ̃), δX (λ)] = 0 (2.15)

where δZ(ω) = ωmZm, δX(λ) = λ(0)mX
m and δW (λ) = λµW

µ. As argued in [9, 10],

such field dependence is characteristic of theories in which we require field strengths to

have Chern-Simons terms in order to be gauge invariant and such Chern-Simons terms are

generated naturally by dimensional reduction. The algebra may be viewed as a Lie algebra

bundle over the non-compact D-dimensional spacetime, i.e. at each point xo on the base,

the graviphoton is constant along the fibre and the algebroid reduces to a Lie algebra with

structure constants fmn
p, Kmnp and KmnpA

p
µ(xo).

The algebroid (2.15) has Lie subalgebra [22]

[Zm, Zn] = −fmn
pZp +KmnpX

p

[Xm, Zn] = fnp
mXp

[Xm,Xn] = 0 (2.16)
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In the next section we shall consider a generalisation of this reduction to the full bosonic

sector of the IIB supergravity.

3. Compactifications of IIB supergravity

We consider here the reduction of the bosonic sector of IIB supergravity on identified

group manifolds with flux. The general reduction of the Fermi sector and Supersymmetry

breaking will be considered elsewhere.5 An important property of the IIB theory is the

self-duality of the Ramond-Ramond five-form field strength.

Ĝ(5) = ∗Ĝ(5) (3.1)

Such a constraint cannot naturally be encoded in a Lagrangian formalism and it must be

separately imposed on the equations of motion. The approach will be to treat Ĝ(5) and

∗Ĝ(5) as independent fields in the Lagrangian and impose the self-duality constraint after

the dimensional reduction. We shall only be interested in the general structure of the

reduced theory, in particular the gauge symmetries, so the issue of self duality will not play

a significant role.

The bosonic sector of the ten-dimensional IIB Lagrangian, written in a manifestly

SL(2) invariant form is

LIIB = R̂∗1+
1

4
tr
(
∗dK̂ ∧ dK̂−1

)
−

1

2
K̂ab ∗Ĥ

a
(3)∧Ĥb

(3)−
1

4
∗Ĝ(5)∧Ĝ(5)−

1

4
ǫabĈ(4)∧Ĥa

(3)∧Ĥb
(3)

(3.2)

Where the 3-form field strengths Ha
(3) transform as a doublet under SL(2), the self-dual

five-form Ĝ(5) as a singlet and the axio-dilaton τ (written above in terms of the scalars K̂)

in a fractionally linear way

τ →
aτ + b

cτ + d

(
a b

c d

)
∈ SL(2) (3.3)

The trace in (3.2) is taken over the SL(2) indices a = 1, 2. The field strengths and scalars

K̂ are defined;

Ĝ(5) = dĈ(4)+
1

2
ǫabB̂

a
(2)∧Ĥ

b
(3) Ĥa

(3) = dB̂a
(2) =

(
db(2)
dc(2)

)
K̂ = eφ

(
1 C(0)

C(0) |τ |2

)
(3.4)

where

ǫab =

(
0 1

−1 0

)
τ = C(0) + ie−φ (3.5)

The scalar sector consists of a dilaton φ and a Ramond-Ramond zero-form C(0) which

parameterise the coset manifold SL(2; R)/SO(2) ≃ SU(1, 1)/U(1). Ĉ(4) and c(2) are p-form

fields arising from the massless Ramond-Ramond sector of the Type IIB String spectrum

5See [17] for a recent discussion of N = 1 vacua in the case where X is a six-dimensional Nil or Solve-

manifold.
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and b(2) is the Kalb-Ramond potential. The ten dimensional Equations of motion derived

from the Lagrangian (3.2) are

d ∗ Ĝ(5) =
1

2
ǫabĤ

a
(3) ∧ Ĥ

b
(3)

d ∗ K̂abĤ
a
(3) = ǫabĤ

b
(3) ∧ Ĝ(5)

d ∗ dK̂ab = ∗Ĥa
(3) ∧ Ĥ

b
(3) (3.6)

and the Bianchi identities are

dĜ(5) −
1

2
ǫabĤ

a ∧ Ĥb = 0 dĤa = 0 (3.7)

which are consistent with the self-duality constraint (3.1). The action of S-duality on these

fields is

K̂ → StK̂S B̂(2) → S−1B̂(2) (3.8)

and ǫab is invariant

ǫ→ StǫS = ǫ (3.9)

where S ∈ SL(2; Z) ⊂ SL(2).

3.1 Inclusion of fluxes

The flux ansatz for the two form is a generalisation of that described in [9, 22], which

transforms covariantly under S-duality, mixing the Neveu-Schwarz and Ramond two form

fluxes. A left-invariant flux, Ma
(3), is included in the two form reduction via the ansatz

B̂a
(2) = B̂a

(2) +̟a
(2) Ĥa

(3) = Ĥa
(3) +Ma

(3) (3.10)

where Ĥa
(3) = dB̂a

(2) and

d̟a
(2) = Ma

(3) =
1

6
Mmnp

aσm ∧ σn ∧ σp (3.11)

Mmnp
a are constant, SL(2) valued antisymmetric coefficients. Introducing flux on the Ĝ(5)

field strength is not straightforward due to the Chern-Simons term in Ĝ(5). Such terms

threaten the consistency of the truncation as they introduce bare flux potential terms ̟a
(2)

which have explicit y dependence. In [22] it was demonstrated that (for the Heterotic

string), by a careful choice of flux, the consistency of the truncation may be maintained

even for theories with such Chern-Simons terms. These techniques can be generalised to

higher degree forms and applied to the Ĉ(4) potential of the IIB theory to give the flux ansatz

Ĉ(4) = Ŝ(4) −
1

2
ǫab̟

a
(2) ∧ B̂

b
(2) +̟(4) (3.12)

where

d̟(4) = −
1

2
ǫab̟

a
(2) ∧M

b
(3) + K(5) (3.13)
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K(5) is the left-invariant five-form flux

K(5) =
1

120
Kmnpqtσ

m ∧ σn ∧ σp ∧ σq ∧ σt (3.14)

The first term on the right hand side in (3.13) is required to cancel any y-dependance in

the five form field strength that may arise due to the flux on B̂a
(2) in the Chern-Simons

term of Ĝ(5). The reduction ansatz for the five-form field strength (3.4) is

Ĝ(5) = dŜ(4) +
1

2
ǫab

(
B̂a

(2) ∧ Ĥ
b
(3) − 2Ma

(3) ∧ B̂
b
(2)

)
+ K(5) (3.15)

It will be important, especially when considering the symmetry transformations, to

distinguish between those parts of the potentials with flux included implicitly, denoted by

the calligraphic script B̂a
(2) and Ĉ(4), and those without, B̂a

(2) and Ŝ(4). The requirement

that the fluxes do not alter the Bianchi identities (3.7) requires that the fluxes satisfy

d

(
1

6
Mmnp

aσm ∧ σn ∧ σp

)
= 0 d

(
−

1

2
ǫab̟

a
(2) ∧M

b
(3) + K(5)

)
= 0 (3.16)

which impose the algebraic conditions

M[mn|t
af|pq]

t = 0

2ǫabM[mnp
aMqts]

b + 3K[mnpq|lf|ts]
l = 0 (3.17)

In addition to the condition f[mn
qfp]q

t = 0.

3.2 Flux compactification on identified group manifolds

The Chern-Simons term of the ten-dimensional IIB Lagrangian has an explicit dependence

on the potential of the fluxes ̟a
(2) and ̟(4), entering through Ĉ(4). It is the fluxes Ma

(3) and

K(5) that are globally defined, not the potentials so one might worry that the Lagrangian

is not well defined and the reduction not consistent. However variation of the Lagrangian

with respect to the potentials Ŝ(4) and B̂a
(2) still yield the correct, well defined, equations of

motion (3.6). One way to proceed would be to disregard the Lagrangian (3.2) and reduce

the equations of motion (3.6) directly.

The fact that the physics depends only on the fluxes Ma
(3) and K(5) and not the poten-

tials ̟a
(2) and ̟(4) is due to the gauge invariance of the theory under antisymmetric tensor

transformations. However, even though the equations of motion are manifestly invariant

under the tensor transformations, the Lagrangian is not. Consider the Chern-Simons form

contribution to the action

SCS =
1

4

∫

M

ǫabĈ(4) ∧ Ĥa
(3) ∧ Ĥb

(3) (3.18)

under the antisymmetric tensor transformation δX Ĉ = dΛ̂ the action transforms as

δXSCS =
1

4

∫

M

ǫabdΛ̂ ∧ Ĥa
(3) ∧ Ĥb

(3)

=
1

4

∫

∂M

ǫabΛ̂ ∧ Ĥa
(3) ∧ Ĥb

(3) (3.19)
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which is zero if either the ten-dimensional spacetime has no boundary or Λ̂ vanishes on

the boundary. The problem arises when one considers large gauge transformations. The

fact that SCS is not manifestly invariant under large gauge transformations is related to

the appearance of the bare flux potentials ̟a
(2) and ̟(4). This issue, in addition to the

self-duality constraint provides good motivation to consider the reductions of the equations

of motion directly. However there are some issues, such as moduli fixing, in which it can

be helpful to have an explicit reduction of the scalar potential.

The left-invariant Scherk-Schwarz reduction ansatze are

Ŝ(4) = S(4) + S(3)m ∧ νm +
1

2
S(2)mn ∧ νm ∧ νn +

1

6
S(1)mnp ∧ ν

m ∧ νn ∧ νp (3.20)

+
1

24
S(0)mnpqν

m ∧ νn ∧ νp ∧ νq

Ĝ(5) = G(5) +G(4)m ∧ νm +
1

2
G(3)mn ∧ νm ∧ νn +

1

6
G(2)mnp ∧ ν

m ∧ νn ∧ νp

+
1

24
G(1)mnpq ∧ ν

m ∧ νn ∧ νp ∧ νq +
1

120
G(0)mnpqtν

m ∧ νn ∧ νp ∧ νq ∧ νt

where Ĝ(5) is defined by (3.4) For the two-form we define

B̂a
(2) = Ba

(2) +Ba
(1)m ∧ νm +

1

2
Ba

(0)mnν
m ∧ νn (3.21)

Ĥa
(3) = Ha

(3) +Ha
(2)m ∧ νm +

1

2
Ha

(1)mn ∧ νm ∧ νn +
1

6
Ha

(0)mnpν
m ∧ νn ∧ νp

and similarly for the three form field strength with flux Ĥa
(3)

Ĥa
(3) = Ha

(3) + Ha
(2)m ∧ νm +

1

2
Ha

(1)mn ∧ νm ∧ νn +
1

6
Ha

(0)mnpν
m ∧ νn ∧ νp (3.22)

The reduced field strengths and Bianchi identities are given in appendix A. The reduced

theory has scalar potential

V = −
1

2
e2(β−α)ϕ

(
gmng

pqgtsfpt
mfqs

n + 2gmnfqm
pfpn

q
)

−
1

4
e−10(β−α)ϕgmngpqgtsglkgijG(0)mptliG(0)nqskj

−
1

2
e−6(β−α)ϕgmngpqgtsKabH

a
(0)mptH

b
(0)nqs (3.23)

3.3 Gauge symmetry

In this section the gauge symmetries of the IIB theory reduced on an identified group

manifold X with flux described in the previous sections are investigated. The presence

of the Chern-Simons term in Ĝ(5) leads to a gauge algebra with a far more complicated

structure than seen in (2.15).

3.3.1 Three form anti-symmetric tensor transformations

The antisymmetric tensor transformation Ŝ(4) → Ŝ(4) + dΛ̂(3) leaves the field strength Ĝ(5)

invariant and is generated by the parameters

Λ̂(3) = Λ(3) + Λ(2)m ∧ νm +
1

2
Λ(1)mn ∧ νm ∧ νn +

1

6
Λ(0)mnpν

m ∧ νn ∧ νp (3.24)
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Gauge transformations with respect to each component of Λ̂(3) are generated by δX(Λ(3)),

δX(Λ(2)m), δX(Λ(1)mn) and δX(Λ(0)mnp). The generators of this transformation are defined

as δX(Λ̂) and their action on the reduced potential is

δX(Λ̂)S(4) = dΛ(3) − Λ(2)m ∧ Fm

δX(Λ̂)S(3)m = DΛ(2)m + Λ(1)mn ∧ Fn

δX(Λ̂)S(2)mn = −Λ(2)pfmn
p +DΛ(1)mn − Λ(0)mnpF

p

δX(Λ̂)S(1)mnp = Oqt
mnpΛ(1)qt +DΛ(0)mnp

δX(Λ̂)S(0)mnpq = −Otsl
mnpqΛ(0)tsl (3.25)

where constants Oqt
mnp and Otsl

mnpq are defined as

Oqt
mnp = 3δq

[mfnp]
t

Otsl
mnpq = 6δ[m

tδn
sfpq]

l (3.26)

3.3.2 One-form anti-symmetric tensor transformations

Consider the symmetry generated by the gauge transformation

δY (λ̂)B̂a
(2) = δY (λ̂)B̂a

(2) = dλ̂a
(1) (3.27)

The three form field strength Ĥa
(3) is manifestly invariant under this transformation, but

invariance of the five form Ĝ(5) requires a compensating transformation from Ŝ(4). The

self-dual five form field strength is

Ĝ(5) = dŜ(4) +
1

2
ǫab

(
B̂a

(2) ∧ dB̂
b
(2) − 2Ma

(3) ∧ B̂
b
(2)

)
+ K(5) (3.28)

We define the effect of the infinitesimal transformation δY (λ̂) on Ŝ(4) as that which ensures;

δY (λ̂)Ĝ(5) = 0, i.e.

δY (λ̂)Ĝ(5) = d
(
δY (λ̂)Ŝ

)
+

1

2
ǫab

(
dλ̂a

(1) ∧ dB̂
b
(2) − 2Ma

(3) ∧ dλ̂
b
(1)

)
= 0 (3.29)

Integrating this equation gives an expression for the gauge transformation of Ŝ(4);

δY (λ̂)Ŝ(4) = −
1

2
ǫab

(
dλ̂a

(1) ∧ B̂
b
(2) + 2λ̂a

(1) ∧M
b
(3)

)
+ dΛ(3) (3.30)

where Λ(3) is an arbitrary 3-form, which we shall set to zero. The gauge parameter and its

exterior derivative are

λ̂a
(1) = λa

(1) + λa
(0)mν

m

dλ̂a
(1) = dλa

(1) − λa
(0)mF

m +Dλa
(0)m ∧ νm −

1

2
λa

(0)pfmn
pνm ∧ νn (3.31)

Substituting (3.31) in (3.30), the one-form gauge transformations are

δY (λ̂)S(4) = −
1

2
ǫab

(
dλa

(1) − λa
(0)mF

m
)
∧Bb

(2) −
1

6
ǫabλ

a
(1)Mmnp

b ∧Am ∧An ∧Ap

δY (λ̂)S(3)m = −
1

2
ǫab

(
dλa

(1) − λa
(0)nF

n
)
∧Bb

(1)m −
1

2
ǫabλ

a
(1)Mmnp

b ∧An ∧Ap

−
1

2
ǫabDλ

a
(0)m ∧Bb

(2) −
1

6
ǫabλ

a
(0)mMnpq

bAn ∧Ap ∧Aq
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δY (λ̂)S(2)mn = −
1

2
ǫab

(
dλa

(1) − λa
(0)pF

p
)
Bb

(0)mn − ǫabλ
a
(1) ∧Mmnp

bAp

+
1

2
ǫabλ

a
(0)pfmn

pBb
(2) − ǫabDλ

a
(0)[m ∧Bb

(1)n] − ǫabλ
a
(0)[mMn]pq

bAp ∧Aq

δY (λ̂)S(1)mnp = −ǫabλ
a
(1)Mmnp

b −
3

2
ǫabDλ

a
(0)[mB

b
(0)np] − 3ǫabλ

a
(0)[mMnp]q

bAq

+
3

2
ǫabλ

a
(0)qf[mn

qBb
(1)|p]

δY (λ̂)S(0)mnpq = 6ǫabλ
a
(0)tf[mn

tBb
(0)pq] − 4ǫabλ

a
(0)[mMnpq]

b (3.32)

and for the two form

δY (λ̂)Ba
(2) = dλa

(1) − λa
(0)mF

m

δY (λ̂)Ba
(1)m = Dλa

(0)m

δY (λ̂)Ba
(0)mn = −λa

(0)pfmn
p (3.33)

3.3.3 Right action of the group manifold

X = G/Γ inherits the right action of the group GR on G. The calculation of how the

reduced fields transform under GR is somewhat involved and only the results are given

here. Details of the calculation may be found in appendix B. The right action gives

δZ(ωm)S(4) =
1

4
ǫabMmnp

aωpBb
(2) ∧A

m ∧An −
1

24
Kmnpqtω

tAm ∧An ∧Ap ∧Aq

δZ(ωm)S(3)m = S(3)nfmp
nωp +

1

4
ǫabMnpq

aωqAn ∧Ap ∧Bb
(1)m

+
1

2
ǫabMmnp

aωpAn ∧Bb
(2) +

1

6
Kmnpqtω

tAn ∧Ap ∧Aq

δZ(ωm)S(2)mn = 2S(2)[m|pf|n]q
pωq+

1

4
ǫabMpqt

aωtAp ∧AqBb
(0)mn + ǫabMmpq

aωpAq ∧Bb
(1)n

+
1

2
ǫabMmnp

aωpBb
(2) −

1

2
Kmnpqtω

tAp ∧Aq

δZ(ωm)S(1)mnp = 3S(1)[mn|qf|p]t
qωt +

3

2
ǫabMmnq

aωqBb
(1)p −

3

2
ǫabMmqt

aωtBb
(0)npA

q

+Kmnpqtω
tAq

δZ(ωm)S(0)mnpq = 4S(0)[mnp|tf|q]s
tωs + 3ǫabM[mn|t

aBb
(0)|pq]ω

t −Kmnpqtω
t (3.34)

3.3.4 Gauge algebra

Using the results of the previous sections, the full gauge algebra of the compactified IIB

theory is

[δZ (ω̄) , δZ (ω)] = δZ (fnp
mωnω̄p) − δX

(
Kmnpqtω

qω̄t
)
− δX

(
Kmnpqtω

qω̄tAp
)

−δX

(
1

2
Kmnpqtω

qω̄tAn ∧Ap

)

−δX

(
1

6
Kmnpqtω

qω̄tAm ∧An ∧Ap

)

−δY (Mmnp
aωnω̄p) − δY (Mmnp

aωnω̄pAm)
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[
δX(Λ(2)m), δZ(ωm)

]
= δX

(
Λ(2)nfmp

nωp
)

[
δX(Λ(1)mn), δZ(ωq)

]
= δX

(
Λ(1)mpfnq

pωq
)
− δX

(
Λ(1)npfmq

pωq
)

[
δX(Λ(0)mnp), δZ(ωm)

]
= δX

(
Λ(0)mnqfpt

qωt
)

+ δX
(
Λ(0)npqfmt

qωt
)

+ δX
(
Λ(0)pmqfnt

qωt
)

[
δY (λa

(1)), δZ(ωm)
]

= −δX

(
ǫabMmnp

bωpλb
(1)

)
− δX

(
ǫabMmnp

aωpλb
(1) ∧A

n
)

−δX

(
1

2
ǫabMmnp

aωpλb
(1) ∧A

m ∧An

)

[
δY (λa

(0)m), δZ(ωm)
]

= δY

(
λa

(0)nfmp
nωp

)
− δX

(
3ǫabλ

a
(0)mMnpq

bωq
)

All other commutators vanish. This gauge algebra contains a Lie algebra subgroup. A

naive guess for the Lie algebra is

[Zm, Zn] = −fmn
pZp −Mmnp

aYa
p −KmnpqtX

pqt

[Xmnp, Zq] = 3fqt
[mXnp]t

[Ya
m, Zn] = fnp

mYa
p − 3ǫabMnpq

bXmpq (3.35)

with all other commutators vanishing. As in the eleven dimensional supergravity case [10],

the Jacobi identity for this algebra fails to close and a truncation of the set of generators

must be considered. This is a consequence of the reducibility of the gauge transformations.

It will be shown in the examples of section 3.4 that the irreducible gauge transformations

correspond to the irreducible representations of the gauge group. Consider for example the

slightly simpler case where Mmnp
a = 0 then algebra (3.35) reduces to

[Zm, Zn] = −fmn
pZp −KmnpqtX

pqt

[Xmnp, Zq] = fqt
mXnpt + fqt

pXmnt + fqt
nXpmt (3.36)

The triple commutator for Zm is

[[Zm, Zn], Zp] + [[Zn, Zp], Zm] + [[Zp, Zm], Zn] = 3Kmnp[q|tf|sl]
tXqsl

= KmnpjtO
jt
qslX

qsl 6= 0 (3.37)

where the constants Oq
mnpt and Πmnp

qt are

Oqt
mnp = 3δq

[mfnp]
t

Πmnp
qt =

1

2
δ[mqft

np] (3.38)

We see that the commutators (3.36) do not satisfy the Jacobi identity and is therefore not

a Lie algebra. The apparent non-associativity of (3.36) may be understood by considering

the following example. For simplicity consider the case where the group G the identified

group manifold is constructed from is chosen to be semi-simple. It is useful to decompose
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the generator Xmnp as6

Xmnp = X̃mnp + Πmnp
qt X̃qt (3.40)

where Oqt
mnpX̃mnp = 0 and fnp

mX̃np = 0, such that Oqt
mnpXmnp = X̃qt. The algebra

[Zm, Zn] = −fmn
pZp −KmnpqtX̃

pqt

[
X̃mnp, Zq

]
= 3fqt

[mX̃np]t (3.41)

satisfies the Jacobi identity and is a Lie subalgebra of the algebroid (3.35). Of course, the

full symmetry algebra (3.35) satisfies the Jacobi identity, but is not a Lie algebra. It will

be shown in section 3.4.2 that the action of X̃mn on all potentials is trivial so that the

non-trivial action of the antisymmetric tensor transformation is generated by X̃mnp alone.

Adding in the three form flux Mmnp
a and allowing the twisted torus to be non-semi-simple,

the symmetry algebra contains the Lie algebra

[Zm, Zn] = −fmn
pZp −Mmnp

aYa
p −KmnpqtX̃

pqt

[
X̃mnp, Zq

]
= 3fqt

[mX̃np]t

[Ya
m, Zn] = fnp

mYa
p − 3ǫabMnpq

bX̃mpq (3.42)

where X̃mnp satisfies

Oqt
mnpX̃

mnp = 0 Mmnp
aX̃mnp = 0 (3.43)

These two constraints are required in order for the Jacobi identity to be satisfied. The

first is simply a generalisation of the decomposition in (3.40) for non-semi-simple G. To

understand the second constraint Mmnp
aX̃mnp = 0 consider the transformation of the

scalar field

δX(Λ̂)S(0)mnpq = −Otsl
mnpqΛ(0)tsl (3.44)

and now using the decomposition

Λ(0)mnp = Λ̃(0)mnp +Mmnp
aΛ̃(0)a (3.45)

Under the anti-symmetric tensor transformation generated by the parameter Mmnp
aΛ̃(0)a

the scalars S(0)mnpq are invariant

δX(Λ̂)S(0)mnpq = −Otsl
mnpqMtsl

aΛ̃(0)a

= −6f[mn
lMpq]l

aΛ̃(0)a = 0 (3.46)

where the last equality is a consequence of the flux integrability condition (3.17). Therefore

the symmetry with parameters Λ̃(0)a and Λ̃(0)mn leave the scalar field S(0)mnpq invariant and

drop out of the symmetry algebra altogether, in accordance with the Jacobi identity above.

6Consider the further decomposition, eXqt
→ eXqt + fs

qt eXs, where fmn
p eXmn = 0. The action of Πmnp

qt

projects out the eXs contribution, since

Πmnp
qt

eX
qt

→ Πmnp
qt

eX
qt +

1

2
f

[np

t fs
m]t eX

s = Πmnp
qt

eX
qt (3.39)

Therefore, for our purposes, this second decomposition need not be explicitly stated, except to note that

fmn
p eXmn = 0.
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The naive algebra (3.35), with generators TM = (Zm,X
mnp, Ya

m), is not a Lie algebra

but, as we have seen, there exists a truncated set of generators T̃M = (Zm, X̃
mnp, Ya

m)

which do generate a Lie algebra. Similar observations from various flux compactifications of

ten- and eleven-dimensional supergravity have been made by many authors and it has been

shown that free differential algebras [18, 19] have an important role to play in understanding

the algebraic structure of the reduced theories. Indeed, the algebroid (3.35) contains a free

differential algebra which can be identified as the algebra (3.35). In particular, in [20, 21]

it was pointed out that, in order for the free differential algebra that arises from such

reductions to give a Lie algebra, certain additional constraints must be placed on the

structure constants such that the algebra is associative. Following [20, 21], one would

be tempted to impose the constraint Kmnp[q|tf|sl]
t = KmnpjtO

jt
qsl = 0 on the structure

constants in (3.35). It is possible to find physical configurations in which this condition

arises naturally; however, from the above discussion and the examples presented in section

3.4 we see that such a condition is not necessary here. The component X̃mn of the generator

which is responsible for the apparent failure of the Jacobi identity does not act on any

physical field in the theory and so the action of the generators, restricted to the physical

fields, ensures that the Jacobi identity is satisfied on the space of fields. In other words, the

generators TM and T̃M have the same action on the fields of the theory. Further examples,

as applied to compactifications of eleven-dimensional supergravity, may be found in [10].

3.4 Examples and symmetry breaking

In this section the symmetry breaking down to a linearly realised subgroup that is generic

for any solution shall be discussed. For vacua with vanishing scalar expectation value,

this is the complete breaking, but for non-trivial scalar expectation values there will be

further breaking through the standard Higgs mechanism. The examples considered in 3.4.2

and 3.4.3 are the two extreme cases, one where the fluxes vanish and the reduction is the

standard Scherk-Schwarz one and the second in which the structure constants fmn
p vanish

but the fluxes do not. In the following sub-section symmetry breaking in the gravity sector,

i.e. the sector described by (2.7) is discussed. This symmetry breaking is generic for any

such theory.

3.4.1 Symmetry breaking in the gravity sector

The breaking of the local GR symmetry by a choice of vacuum is easy to analyse in the

Scherk-Schwarz reduction. The metric transforms in the bi-adjoint representation

δZ(ω)gmn = gmpfnq
pωq + gnpfmq

pωq (3.47)

These transformations are only isometries for the cases where the metric is invariant

δZ(ω)gmn = 0, i.e. the frame directions σq̄ for which

gmpfnq̄
p + gnpfmq̄

p = 0 (3.48)

are isometric and the generators Zq̄ generate isometries of the metric gmn mediated by the

gauge bosons Aq̄. All directions σq̇ for which

gmpfnq̇
p + gnpfmq̇

p 6= 0 (3.49)
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correspond to symmetries Zq̇ which are broken by the choice of vacuum. The gauge bosons

Aq̇ of these broken symmetries have mass-like terms in the Lagrangian arising from the

kinetic term ∗Dgmn ∧Dgpq of (2.7)

LD = − (gmngpqfmṫ
pfnṡ

q − fṫm
nfṡn

m) ∗ Aṫ ∧Aṡ + · · · (3.50)

If the metric gmn acquires a vacuum expectation value ḡmn, then this becomes a mass term

for those graviphotons which are not associated to isometries of the frozen metric ḡmn,

through the Higgs mechanism

LD = −
1

2
Mṫṡ ∗ A

ṫ ∧Aṡ + · · · (3.51)

where the mass matrix Mṫṡ is given by

Mṫṡ = 2 (ḡmnḡpqfmṫ
pfnṡ

q − fṫm
nfṡn

m) (3.52)

A vacuum in which the scalars have the expectation value ḡmn = ηmn, the (bi-invariant)

Cartan-Killing metric (3.56) will be invariant under GR while any other expectation value

ḡmn will break the gauge symmetry to the subgroup preserving ḡmn.

3.4.2 Reduction on an identified group manifold with semi-simple right action

The reduction on X = G/Γ where G is any semi-simple group is considered. All fluxes are

taken to be zero and therefore Ĉ(4) = Ŝ(4) and B̂a
(2) = B̂a

(2). The gauge algebra in this case

is a Lie algebra

[Zm, Zn] = −fmn
pZp

[Xmnp, Zq] = 3fqt
[mXnp]t

[Ya
m, Zn] = fnp

mYa
p (3.53)

with all other commutators vanishing. This algebra generates the group GR ⋉U(1)q where

q = d +
(
d
3

)
which is broken to the linearly realised subgroup GR × U(1)q by any vacuum

of the theory as will be shown.

For the purposes of this section, the one-form antisymmetric tensor transformations

are chosen to be

δY (λ̂)S(4) = −
1

2
ǫabλ̂

a
(1) ∧ Ĥ

b
(3) (3.54)

where Ĥa
(3) = Ĥa

(3). This choice is related to that in (3.30) by a choice of the arbitrary

parameter Λ(3). The non-linear gauge transformations are

δBa
(0)mn = −λa

(0)pfmn
p + . . .

δS(2)mn = −Λ(2)pfmn
p + . . .

δS(1)mnp = 3Λ(1)[m|tfnp]
t + . . .

δS(0)mnpq = −6Λ(0)[mn|tfpq]
t + . . . (3.55)
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where + . . . denote linear terms. On a semi-simple identified group manifold the Cartan-

Killing metric

ηmn =
1

2
fmp

qfnq
p (3.56)

is non-degenerate and invertible. The inverse metric ηmn may be used to define fm
np =

ηnqfmq
p. These constants may be viewed as maps fmn

pξp → ξmn and fp
mnξmn → ξp for

some antisymmetric ξmn... = ξ[mn...]

f : R
d → R

(d

2) f−1 : R
(d

2) → R
d (3.57)

and satisfy fmp
qfq

np = 2δm
n. It will also be useful to recall the definition of Oqt

mnp and also

to define the constant Πmnp
qt as

Oqt
mnp = 3δq

[mfnp]
t

Πmnp
qt =

1

2
δ[mq ft

np] (3.58)

These constants may be viewed as maps; ξmnp → Omnp
[qt]ξqt and ξmn → Π[mn]

pqtξpqt, or

more abstractly as

O : R
(d

2) → R
(d

3) Π : R
(d

3) → R
(d

2) (3.59)

Note that these maps are not inverses of each other but satisfy the identity

Π[mn]
tslOtsl

[pq] = δmn
pq −

1

2
fmn

tft
pq (3.60)

We also define constants Omnpq
ts,l and Πmnpq

ts,l as

Omnpq
ts,l = 6δ[mn

tsfpq]
l

Πts,l
mnpq =

1

2
δts

[mnfl
pq] (3.61)

which may be thought of as maps defined by Omnpq
[ts,l]ξtsl = ξmnpq and

Πmnpq
[ts,l]ξ

tsl = ξmnpq

O : R
(d

3) → R
(d

4) Π : R
(d

4) → R
(d

3) (3.62)

and satisfy the relationship

Π[mn,p]
ijklOijkl

[qt,s] = δmnp
qts −Omnp

[ij]Π[ij]
qts (3.63)

A number of other useful identities that these constants obey are collected in appendix A

of [10]. The following identities are also useful

D2ξm = fmn
pξpF

n

D2ξmn =
(
Omnp

qt − δp
qfmn

t
)
ξqtF

p (3.64)

The potentials S(0)mnpq, S(1)mnp, S(2)mn and S(3)m take values in the
(
d
4

)
,
(
d
3

)
,
(
d
2

)
and d

dimensional representations of SL(d; R) respectively. In order to understand the possible
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field redefinitions that are required to remove the non-linear group actions, the gauge

parameters must be decomposed into these representations. The Λ(2)m can only take

values in the d representation but we may decompose Λ(1)mn and Λ(0)mnp as

Λ(1)mn = Λ̃(1)mn + fmn
pΛ̃(1)p (3.65)

and

Λ(0)mnp = Λ̃(0)mnp +Omnp
qtΛ̃(0)qt (3.66)

where Λ̃(1)mn and Λ̃(0)mnp satisfy7

fp
mnΛ̃(1)mn = 0 Πqt

mnpΛ̃(0)mnp = 0 (3.67)

In terms of these parameters the transformations (3.25) are

δX(Λ)S(4) = dΛ(3) − Λ(2)m ∧ Fm

δX(Λ)S(3)m = D
(
Λ(2)m +DΛ̃(1)m + Λ̃(0)mnF

n
)
−
(
DΛ̃(1)mn − Λ̃(1)mn

)
∧ Fn

δX(Λ)S(2)mn = D
(
Λ̃(1)mn −DΛ̃(0)mn

)
− Λ̃(0)mnpF

p

−fmn
p
(
Λ(2)p +DΛ̃(1)p + Λ̃(0)pqF

q
)

δX(Λ)S(1)mnp = −DΛ̃(0)mnp +Oqt
mnp

(
DΛ̃(1)qt − Λ̃(1)qt

)

δX(Λ)S(0)mnpq = −Otsl
mnpqΛ̃(0)tsl (3.68)

The goldstone bosons of the broken symmetries (3.55) are given by

χa
(0)m =

1

2
fm

npBa
(0)np

χ(0)mnp = Πmn,p
qtslS(0)qtsl

χ(1)mn = Πmn
pqtS(1)pqt

χ(2)m =
1

2
fm

npS(2)np (3.69)

These Goldstone bosons transform as

δY (λa)χa
(0)m = λa

(0)m

δX(Λ)χ(0)mnp = −Λ̃(0)mnp

δX(Λ)χ(1)mn = DΛ̃(0)mn − Λ̃(1)mn

δX(Λ)χ(2)m = Λ(2)m +DΛ̃(1)m + Λ̃(0)mnF
n (3.70)

7As discussed in a footnote to section 3.3.4, a further decomposition eΛ(0)mn = Λ(0)mn + fmn
pΛ(0)p

(where fp
mnΛ(0)mn = 0) is redundant since the parameter Λ(0)p is projected out in (3.66) due to the

identity Omnp
qtfqt

s = 0. We may therefore neglect Λ(0)p and enforce the constraint fp
mn eΛ(0)mn = 0

without loss of generality.
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One may therefore define the following δY (λa
(0)) and δX(Λ(0)mnp,Λ(1)mn,Λ(2)m)-invariant

potentials

S̆(4) = S(4) − χ(2)m ∧ Fm

S̆(3)m = S(3)m −
1

2
ǫabχ

a
(0)mH

b
(3) −Dχ(2)m + χ(1)mn ∧ Fn

S̆(2)mn = S(2)mn + ǫabχ
a
(0)mH

b
(2)n −Dχ(1)mn + fmn

pχ(2)p + χ(0)mnpF
p

S̆(1)mnp = S(1)mnp −
3

2
ǫabχ

a
(0)mH

b
(1)np −Dχ(0)mnp +Oqt

mnpχ(1)qt

S̆(0)mnpq = S(0)mnpq + 2ǫabχ
a
(0)mH

b
(0)npq −Otsl

mnpqχ(0)tsl (3.71)

similarly for the Ba-fields

B̆a
(2) = Ba

(2) + χa
(0)m ∧ Fm

B̆a
(1)m = Ba

(1)m −Dχa
(0)m

B̆a
(0)mn = Ba

(0)mn + fmn
pχa

(0)p (3.72)

These field redefinitions take the form of infinitesimal gauge transformations (even though

the Goldstone field need not be small) so the form of the field strengths are not changed

by the redefinition except to replace the potentials (Ba, S) by the (B̆a, S̆) defined above.

The gauge algebra is reduced to

[Zm, Zn] = −fmn
pZp (3.73)

with all other commutators vanishing, generating the group GR × U(1)q as claimed.

3.4.3 Flux reduction on a torus

If fmn
p = 0, then the group GR is abelian and the internal manifold (after discrete identi-

fications to compactify, if necessary) is a torus and one may take GR = U(1)d. With flux

K(5) and Ma
(3), the gauge algebra (3.35) has the Lie sub-algebra

[Zm, Zn] = −Mmnp
aY p

a −KmnpqtX
pqt

[Y m
a , Zn] = −3ǫabMnpq

bXmpq (3.74)

with all other commutators vanishing.

Non-linear realisation of the right action. As a warm up, consider the two-form

sector in isolation. Viewing αm → αmMmnp
a as a map

M : R
d → R

d(d−1) (3.75)

the internal index m can be split into (m′, m̄), so that m̄ labels the (d − d′) dimensional

kernel of the map M , and m′ labels the cokernel, so that

Mmnp̄
a = 0 Mm′n′p′

a 6= 0 (3.76)
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Then the transformation of the Ba
(0) scalars is

δBa
(0)n′p′ = ωm′

Mm′n′p′
a, δBa

(0)mn̄ = 0 (3.77)

The transformations generated by Zm′ with parameters ωm′

are spontaneously broken

by any vacuum of the theory. For a vacuum (ḡ, φ̄, K̄) the Am′

fields have mass term in

the Lagrangian

LD = −
1

2
e−4βφ̄ḡmnḡpqK̄abMmpt′

aMnqs′
b ∗ At′ ∧As′ + . . . (3.78)

The 2d dimensional gauge group is broken to the (2d − d′) dimensional abelian subgroup

U(1)2d−d′ generated by Zm̄ and Xm with parameters ωm̄ and λ(0)m respectively. Let

M̃m′n′p′
a be any constants satisfying M̃m′n′p′

aM
b
n′p′q′ = δm′

q′δa
b. Then the Goldstone

fields χ(0)
m′

are defined by

χ(0)
m′

= M̃m′n′p′
aB

a
(0)n′p′ (3.79)

transforming as a shift

δBa
(0)M̄ = 0 δχ(0)

m′

= ωm′

(3.80)

The remaining scalars are invariant, δBa
(0)mn̄

= 0. The massive graviphotons are defined

as Ăm′

= Am′

+ dχ(0)
m′

and are singlets of the gauge transformations.

Non-linear realisation of the one-form antisymmetric tensor transformation.

If the four form potentials are now introduced, the one-form antisymmetric tensor trans-

formations appear as shift symmetries

δBa
(0)mn = Mmnp

aωp + . . .

δS(1)mnp = −ǫabλ
a
(1)Mmnp

b + . . .

δS(0)mnpq = −4ǫabλ
a
(0)mMnpq

b +Kmnpqtω
t + . . . (3.81)

Therefore, even on a flat torus, the presence of flux will break some of the anti-symmetric

tensor transformations generated by Y m
a . The gauge bosons of symmetries with parameters

λa
(0)m and λa

(1) are Ba
(2) and Ba

(1)m respectively and some of these potentials become massive

by the Higgs mechanism. As in the flat torus case above, one may define constants M̃mnp
a

such that Mmnp
bM̃mnp

a = δa
b, such that the goldstone one-form χ(1)a defined as

χ(1)a = S(1)mnpM̃
mnp

a (3.82)

which transforms as δχ(1)a = ǫabλ
b
(1) + . . .. The S(0)mnpq transformation in (3.81) may be

written as

δS(0)mnpq = −4ǫabλ
a
(0)mM

b
npq +Kmnpqtω

t + . . .

= −Rmnpq
t
aλ

a
(0)t +Kmnpqtω

t + . . . (3.83)
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where it is useful to define the constant Rmnpq
t
a = 4ǫabδ

t
[mM

b
npq]. This transformation

may be written as

δS(0)Σ =
(
−λa

(0)t ω
t
)(Rmnpq

t
a

Kmnpqt

)
+ . . .

= α(0)M tMΣ + . . . (3.84)

where the index M = 1, 2 . . . 3d so that

α(0)M =
(
−λ1

(0)m −λ2
(0)m ωm

)
(3.85)

and the index Σ = [mnpq] = 1, 2 . . .
(
d
4

)
. Treating tMΣ as the map

t : R
3d → R

(d

4) (3.86)

the index M may be split into M = (M ′, M̄) where M ′ and M̄ label the cokernel and

kernel of the map t respectively. A basis may then be chosen such that the constant tensor

tMΣ is written as

tMΣ =

(
tM

′

Σ′ 0

0 0

)
(3.87)

The choice of basis is such that there exists an inverse t̃Σ
′

M ′ where tM
′

Σ′ t̃Σ
′

N ′ = δM ′

N ′

and t̃Σ
′

M ′tM
′

Λ′ = δΣ
′

Λ′ . The Goldstone boson for the symmetry with parameter α(0)M ′ is

χ(0)M ′ = t̃Σ
′

M ′S(0)Σ′ (3.88)

It is useful to combine the generators Zm and Y m
a into the doublet

TM =

(
Y m

a

Zm

)
(3.89)

so that δ = αMT
M . Those symmetries generated by T M̄ (with parameter αM̄ ) are pre-

served whilst those generated by TM ′

(with parameter αM ′) have non-linear realisations

and are always broken by a choice of vacuum of the theory. Gauge singlet fields may

be defined

S̆(0)Σ′ = S(0)Σ′ − χ(0)M ′tM
′

Σ′

S̆(1)mnp = S(1)mnp + χ(1)aMmnp
a

B̆a
(0)mn = B(0)mn − χ(0)

pMmnp
a (3.90)

Both the Ha
(1)mn

and G(1)mnpq field strengths contribute to the graviphoton mass term

where G(1)mnpq = KmnpqtA
t + . . . and Ha

(1)mn
= Mmnp

aAp + . . .. For a given vacuum

expectation value of the scalars ḡ, K̄ and ϕ̄, the mass-like term in the Lagrangian due to

these field strengths may be written as

LD = −
1

2
MAB ∗ AA

(1) ∧AB
(1) + . . . (3.91)
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where the components of the mass matrix are

Mmn = e4βϕ̄ḡmtḡnsḡplḡqk

(
e4(α−β)ϕ̄KmnpqiKtslkj +

1

d
ḡlq ḡpkK̄abMmni

aMtsj
b

)

Mm
n = −2e4βϕ̄ḡmtḡnsḡplḡqke4(α−β)ϕ̄ǫabMtsl

aKmnpqi

Mmn = 4e4βϕ̄ḡmtḡnsḡplḡqkǫacǫbdMmnp
cMqts

d (3.92)

and

AA
(1) =

(
Am

Ba
(1)m

)
(3.93)

For a given vacuum expectation value of the scalar fields the diagonalisation of the ma-

trix MAB gives the (mass)2 spectrum of the AA
(1) potentials. In general, with non-trivial

internal geometry some of the S(1)mnp gauge fields will become massive, corresponding to

the breaking of symmetries generated by X̃mnp. Upon symmetry breaking by the choice

of some vacuum (ḡ, ϕ̄, K̄), the general effective theory will contain massive one-forms and

massless gauge bosons that are linear combinations of the Ba
(1)m, Am and S(1)mnp.

4. Compactifications with S-duality twists and F-theory

Consider a D + d + 1 dimensional field theory coupled to gravity. The theory is reduced

on a d-dimensional torus T d, with real coordinates za ∼ za + 1 where a = 1, 2 . . . d. This

produces a theory in D + 1 dimensions with scalar fields that include those in the coset

GL(d,R)/SO(d) arising from the torus moduli. Truncating to the za independent zero

mode sector, this theory has a global symmetry U that contains the GL(d,R) arising from

diffeomorphisms of the d-dimensional torus. In the full Kaluza-Klein theory this is broken

to the GL(d,Z) that acts as large diffeomorphisms on the d-dimensional torus similarly,

in string theory U is broken to the discrete U-duality subgroup U(Z). The action of U on

fields ψ of the reduced theory in some representation of U is denoted as ψ → γ[ψ].

The duality twist reductions of this theory describes reduction on a further circle with

periodic coordinate y ∼ y + 1, twisting the fields over the circle by an element of U using

the ansatz [11, 23, 24, 15]

ψ(xµ, y) = γy[ψ(xµ)] (4.1)

where xµ are the D non-compact spacetime coordinates. Consistency of the reduction, in

the sense described in the introduction, requires the reduced theory to be independent of

y, which is achieved by choosing the form of γ to be

γ(y) = exp (My) (4.2)

for some matrix M in the Lie algebra of U .

The map γ(y) is not periodic, but has monodromy M(γ) = γ(0)γ(1)−1 = eM in U

and the physically distinct reductions are classified by the conjugacy class of the mon-

odromy [23]. In the full theory in which all massive modes are kept, U is typically broken

to a discrete subgroup U(Z). In order for Ψ(x, y + 2π) = MΨ(x, y) to be well-defined, the

monodromy M must therefore be in the symmetry group U(Z) [15, 25].
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If the monodromy is in the geometric GL(d; Z) sub-group then the reduction may

be viewed as a specific class of the identified group manifold reductions of the previous

sections. In this case the identified group manifold really is a topologically twisted torus

fibration. If the monodromy is more general then the reduction cannot be given as a purely

geometric construction as the monodromy (or transition functions between patches) may

now be S or T dualities. For example, if the monodromy is an element of the T-duality

group, then the string theory is only defined in a certain patch and we must consider the

identification of a particular string theory as only possible locally. Globally, this picture

must be generalised to include the string theory and its T-dual. In particular, the transition

function would invert the radii of the circles on a torus and generate non-trivial B-fields -

clearly a non-geometric operation. The introduction of Ramond fields and their associated

D-branes on a background with a monodromy in the factorised duality subgroup of O(d, d)

leads to further startling features [11, 26]. For example, the dimension of the D-brane would

not be globally defined as the transition function increases or decreases the dimension of

the brane as one moves between patches [26, 27]. Another example is that of string theory

on a Calabi-Yau manifold [15]. Here the backgrounds are permitted to have transition

functions which are mirror symmetries. It should be noted that truncation to the lowest

modes on a Calabi-Yau is not consistent so the detailed analysis in that case is expected

to be more complicated.

The situation is even more drastic if the monodromy is an element of S-duality. In this

case, the perturbative string theory picture can only be used locally. In this section such

reductions of IIB supergravity with S-duality twists are investigated at the supergravity

level. Such reductions have also been investigated in [11, 28].

4.1 Reductions with S-duality twists

S-duality is non-perturbative in the string coupling gs, mixing Ramond and Neveu-Schwarz

fields, and therefore cannot be given a worldsheet interpretation but there is compelling

evidence to believe that this symmetry is an exact symmetry of the full non-perturbative

theory [29].

The reduction to nine dimensions of the bosonic sector of IIB supergravity on a circle

with an S-duality twist will be considered. The ten-dimensional IIB Lagrangian, written

in a manifestly SL(2) invariant form was given by (3.2). Consider the reduction ansatz

ds2D+1 = e2αϕds2D + e2βϕ(dy +A)2 (4.3)

where y parameterises the circle direction. The duality twist ansatz (3.8), (4.1) and (4.2)

to reduce the fields of the IIB theory on circle with S-duality twist are

K̂a
b(x, y) = e(M

t)a
cyKc

d(x)e
Md

by B̂a
(2)(x, y) = eM

a
by
(
Bb

(2)(x) +Bb
(1)(x) ∧ ν

)
(4.4)

where M is a twist matrix in the Lie algebra of SL(2) and M t its transpose. The reduced

scalar Lagrangian is then8

LK =
1

4
Tr
(
∗DK ∧DK−1

)
−

1

2
e−2(α+β)ϕTr

(
M2 +MTKMK−1

)
∗ 1 (4.5)

8We have made use of the fact that Tr(M t
· M t) = Tr(M · M) in the potential.
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where the covariant derivatives are

DiK
a
b = ∂iK

a
b − (MTK + KM)abAi

Di(K
−1)a

b = ∂i(K
−1)a

b + (K−1MT +MK−1)a
bAi (4.6)

The reduction of the two form field strength term

L bH
= −

1

2
Kab ∗ Ĥ

a
(3) ∧ Ĥ

b
(3) (4.7)

gives the low energy effective term

LH = −
1

2
Kabe

−4αϕ ∗Ha
(3) ∧H

b
(3) −

1

2
Kabe

−2(α+β)ϕ ∗Ha
(2) ∧H

b
(2) (4.8)

where the reduced field strengths are

Ha
(3) = dBa

(2) +Ma
bB

b
(2) ∧A−Ba

(1) ∧ F

= DBa
(2) −Ba

(1) ∧ F

Ha
(2) = dBa

(1) −Ma
bB

b
(1) ∧A−Ma

bB
b
(2)

= DBa
(1) −Ma

bB
b
(2)

F = dA (4.9)

with the Bianchi identites

DHa
(3) = 0 DHa

(2) = 0 dF = 0 (4.10)

The self dual five form field strength, although a singlet under the S-duality transformation,

still has a non-trivial deformation in the Scherk-Schwarz ansatz coming from the Chern-

Simons terms. The five form term in the action is

L bG
= −

1

4
∗ Ĝ(5) ∧ Ĝ(5) (4.11)

which reduces to

LG = −
1

4
e−8αϕ ∗G(5) ∧G(5) −

1

4
e−(2α+β)ϕ ∗G(4) ∧G(4) (4.12)

where

G(5) = dC(4) − C(3) ∧ F +
1

2
ǫabB

a
(2) ∧H

b
(3)

G(4) = dC(3) −
1

2
ǫab

(
Ba

(1) ∧H
b
(3) −Ba

(2) ∧H
b
(2)

)
(4.13)

Finally, the Chern-Simons terms reduce to

Lcs = −
1

4

(
C(3) ∧H

a
(3) ∧H

b
(3) + 2C(4) ∧H

a
(3) ∧H

b
(2)

)
(4.14)

The self duality constraint Ĝ(5) = ∗Ĝ(5) reduces to a relationship between Ĝ(5) and Ĝ(4)

and must be imposed on the equations of motion of the reduced theory.
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4.2 Gauge Symmetry and its Breaking

In this section the symmetries of the reduced Lagrangian are studied and the symmetry

breaking and mass mechanisms involved are analysed.

4.2.1 Antisymmetric tensor transformations

In ten dimensions the three from field strength Ha
(3) is invariant under the abelian anti-

symmetric tensor transformation of the potential δB̂a
(2) = dλ̂a

(1). The four form potential

transforms to compensate for the transformation of the Chern-Simons term in the field

strength Ĝ(5) as

δĈ(4) = −
1

2
ǫabλ̂

a
(1) ∧ Ĥ

b
(3) (4.15)

The combined transformations of the four-form and two-form potentials leave the five-

form field strength, Ĝ(5), invariant. Under the S-duality twisted reduction considered in

the preceding section, the reduced potentials transform as

δBa
(2) = dλa

(1) −Ma
bλ

b
(1) ∧A+ λa

(0)F

δBa
(1) = dλa

(0) +Ma
bλ

b
(0) ∧A+Ma

bλ
b
(1)

δC(4) = −
1

2
ǫabλ

a
(1) ∧H

b
(3)

δC(3) = −
1

2
ǫab

(
λa

(1) ∧H
b
(2) − λa

(0)H
b
(3)

)
(4.16)

The transformation δBa
(1) = Ma

bλ
b
(1)+. . . is a shift symmetry, i.e. it is non-linear realisation

of the symmetry group and will not be preserved by any vacuum of the theory. A massive

two-form B̆a
(2) may be defined

B̆a
(2) = Ba

(2) − (M−1)abDB
b
(1) (4.17)

where Ba
(2) has eaten Ba

(1) to become massive and B̆a
(2) is a singlet of the symmetry trans-

formations (4.16). The redefinition (4.17) is dependent on the existence of the inverse

(M−1)ab. It will be shown that that this is not always the case and that care must be

taken in defining the massive two form fields (4.17). For now it will be assumed that the

mass matrix is chosen such that (M−1)ab exists. Applying the field redefinitions

C̆(3) = C(3) +
1

2
ǫab(M

−1)acB
c
(1) ∧H

b
(2)

C̆(4) = C(4) +
1

2
ǫab(M

−1)acB
c
(1) ∧H

b
(3) (4.18)

the field strengths become

G(5) = dC̆(4) − C̆(3) ∧ F +
1

2
ǫabB̆

a
(2) ∧DB̆

b
(2)

G(4) = dC̆(3) −
1

2
MabB̆

a
(2) ∧ B̆

b
(2)

Ha
(3) = DB̆a

(2)

Ha
(2) = −Ma

bB̆
b
(2) (4.19)
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where Mab = ǫ(a|cM
c
|b). B

a
(1) is eaten by B̆a

(2) and completely drops out of all of the field

equations. The C̆(3) and C̆(4) fields remain massless and charged under the abelian gauge

symmetry generated by the transformations

δC̆(3) = dΛ(2) δC̆(4) = dΛ(3) (4.20)

The Lagrangian of the reduced theory is then

L9 = R ∗ 1 −
1

2
∗ dϕ ∧ dϕ−

1

2
e2(β−α)ϕ ∗ F ∧ F +

1

4
Tr
(
∗DK ∧DK−1

)

−
1

4
e−8αϕ ∗G(5) ∧G(5) −

1

4
e−(2α+β)ϕ ∗G(4) ∧G(4)

−
1

2
Kabe

−4αϕ ∗DB̆a
(2) ∧DB̆

b
(2) −

1

2
Kabe

−2(α+β)ϕMa
cM

b
d ∗ B̆

c
(2) ∧ B̆

d
(2)

−
1

4
ǫab

(
C̆(3) ∧H

a
(3) ∧H

b
(3) + 2C̆(4) ∧H

a
(3) ∧H

b
(2)

)

−
1

2
e−2(α+β)ϕTr

(
M2 +M tKMK−1

)
∗ 1 (4.21)

In some cases Ma
b may not be invertible. An example is the reduction with parabolic

twist where

Mp =

(
0 m

0 0

)
m ∈ Z (4.22)

This mass matrix has no inverse so one must be careful in defining the massive two

form (4.17). For such non-invertible matrices one may always choose a basis such that

the mass matrix takes the form

M =

(
M 0

0 0

)
(4.23)

In this basis the potentials are written as

Ba
(1) =

(
B′

(1)

B̄(1)

)
Ba

(2) =

(
B′

(2)

B̄(2)

)
(4.24)

It is then possible to identify a massive two-form

B̆(2) = B′
(2) −M−1DB′

(1) (4.25)

whilst B̄(1) and B̄(2) remain massless.

4.2.2 Internal diffeomorphism and fixed points of the twist

In addition to the antisymmetric tensor transformations, the reduced theory has a U(1)

gauge symmetry originating from diffeomorphisms y → y−ω(x) along the compactification

circle. The reduced fields transform as

δA = dω

δBa
(1) = Ma

bB
b
(1)ω

δBa
(2) = Ma

bB
b
(2)ω

δKab = −2K(a|cM
c
|b)ω (4.26)
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where ω = ω(x). For a given expectation value of the scalars 〈K〉ab = Kab this symmetry

will be broken unless

〈δK〉ab = −2K(a|cM
c
|b)ω = 0 (4.27)

If this is the case, then the graviphotons are massless, as may be seen from the DK term

in the Lagrangian (4.21)

L9 =
1

4
Tr
(
∗DK ∧DK

−1
)

+ . . . = −
1

2
µ2 ∗ A ∧A+ . . . (4.28)

where the mass µ is given by

µ2 = Tr
(
M2 +M tKMK

−1
)

(4.29)

This µ2 term is proportional to the scalar potential of the reduction and therefore the

graviphotons will be massless at the minima of the potential. The minima of the potential

for such reductions was studied in [15] where it was shown that the potential is zero only

for elliptic twists, an argument that is reviewed here. The moduli matrix may be written

in terms of the SL(2)/SO(2) zweibein V as Kab = Va
αδαβV

β
b where

V = e
1
2
φ

(
1 C(0)

0 e−φ

)
(4.30)

and α, β = 1, 2 are SO(2) matrix representation indices. The vanishing point for the

potential and graviphoton mass occurs when the complex structure has the vacuum value

〈V〉 = V0 such that the twist matrix M is equivalent to a matrix R in the Lie algebra of

SO(2) up to a conjugation by V0

M = V−1
0 RV0 (4.31)

This may be seen as follows. Setting K = Vt
0V0 and M = V−1

0 RV0 the potential may be

written as [15]

V ∝ µ2 =
1

2
Tr
(
Y 2
)

(4.32)

where Y = R+Rt. Since R is in the Lie algebra of SO(2), Y = 0 and the potential vanishes

and the graviphotons are massless. As recognised in [15] this is to expected as such a choice

of vacuum is a fixed point of the twist action and therefore will have no effect on the field

theory. For this choice of scalars (4.27) can be written

〈δK〉ab = −(V0)a
αRαβ(V0)

β
b − (V0)b

αRαβ(V0)
β

a

= −2(V0)a
αR(αβ)(V0)

β
b (4.33)

The right hand side of (4.33) vanishes as the generator Rαβ of SO(2) is antisymmetric.

Therefore a choice of vacuum will generally break the U(1) isometry group unless the twist

is in the elliptic conjugacy class.
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4.3 Non-geometric twists and F-theory

F-Theory is formally a twelve dimensional theory which when reduced on T 2 gives a theory

whose truncation to the massless sector gives the IIB supergravity. The S-duality of the IIB

theory is then described geometrically as the mapping class group of the T 2 fibre for which

the axio-dilaton τ = C(0) + ie−φ is the complex structure. This, apparently redundant,

description of the IIB theory becomes useful when one considers compactifications of F-

Theory on spaces that have a T 2 fibration that is not trivial [30]. The relevance of this

picture here is that in some cases it may be used to give a geometrical interpretation to

otherwise non-geometric duality twist backgrounds.

Consider for example the SL(2,Z) U-duality of the IIB string theory [25]. Reducing

from 10 to 9 dimensions on a circle with monodromy in SL(2,Z) investigated in the previous

section and also [23, 24, 31, 32]. As the SL(2,Z) symmetry is not geometric, this cannot

be realised as a compactification in the conventional sense. However, it can be realised as

a ‘compactification’ of F-theory on the twisted torus corresponding to a T 2 bundle over S1

with SL(2,Z) monodromy [23]. For example, the case of an elliptic twist with vanishing

potential discussed in the last section may be thought of as a reduction of F-Theory on an

orbifold [15].

This further extends the notion of a non-geometric background to a non-perturbative

background where one must cover the internal circle with at least two patches and where the

transition functions between patches are S-dualities. If these Scherk-Schwarz reductions lift

to solutions of the full M-Theory one must accept that, even at weak coupling, perturbative

string theory can at best describe only the local physics of such solutions.
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A. Bianchi identities and field strengths

The reduced field strengths are

Ha
(3) = dBa

(2) +Ba
(1)m ∧ Fm +

1

6
Ma

mnpA
m ∧An ∧Ap

Ha
(2)m = DBa

(1)m +Ba
(0)mnF

n +
1

2
Ma

mnpA
n ∧Ap

Ha
(1)mn = DBa

(0)mn + fp
mnB

a
(1)p +Ma

mnpA
p

Ha
(0)mnp = 3Ba

(0)[m|qf
q

|np] +Ma
mnp (A.1)

and for the five form field strength

G(5) = dC(4) + C(3)m ∧ Fm +
1

120
KmnpqtA

m ∧An ∧Ap ∧Aq ∧At

+
1

2
ǫabB

a
(2) ∧H

b
(3) −

1

6
ǫabM

a
mnpB

b
(2) ∧A

m ∧An ∧Ap
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G(4)m = DC(3)m + C(2)mn ∧ Fn +
1

24
KmnpqtA

n ∧Ap ∧Aq ∧At

+
1

2
ǫabB

a
(2) ∧H

b
(2)m −

1

2
ǫabB

a
(2) ∧H

b
(3)

+
1

6
ǫabM

a
qnpB

b
(1)m ∧An ∧Ap ∧Aq −

1

2
ǫabM

a
mnpB

b
(2) ∧A

n ∧Ap

G(3)mn = DC(2)mn + C(2)pf
p
mn + C(1)mnp ∧ F

p +
1

6
KmnpqtA

p ∧Aq ∧At

+
1

2
ǫabB

a
(0)mnH

b
(3) +

1

2
ǫabB

a
(1)m ∧Hb

(2)n +
1

2
ǫabB

a
(2) ∧H

b
(1)mn

−ǫab

(
Ma

qtpB(0)mnA
q ∧At +Ma

mpqB
b
(1)n ∧Aq +Ma

mnpB
b
(2)

)
∧Ap

G(2)mnp = DC(1)mnp + C(0)mnpqF
q +

1

2
KmnpqtA

q ∧At

+
3

2
ǫabB

a
(2)B

b
(0)[m|qf

q

|np]
+

3

2
ǫabB

a
(0)mnH

b
(2)p −

3

2
ǫabB

a
(1)m ∧Hb

(1)np

−ǫab

(
Ma

mnpB
b
(2) − 3Ma

mnqB
b
(1)p ∧A

q +
3

2
Ma

pqtB
b
(0)mnA

q ∧At

)

G(1)mnpq = DC(0)mnpq + 6C(1)pqtf
t
mn +KmnpqtA

t

+3ǫabB
a
(0)mnH

b
(1)pq + 6ǫabB

a
(1)mB

b
(0)[n|tf

t
|pq]

−ǫab

(
6Ma

mntB
b
(0)pq ∧A

t − 4Ma
mnpB

b
(1)q

)

G(0)mnpqt = −2C(0)spqtf
s
mn +Kmnpqt

+30ǫabB
a
(0)mnB

b
(0)[p|sf

s
|qt] − 10ǫabM

a
mnpB

b
(0)qt (A.2)

where the GR covariant derivatives are

Dψ(p)m1m2...mq
= dψ(p)m1m2...mq

+ (−)pψ(p)[m1m2...mq−1|nf|mq]p
n ∧Ap (A.3)

The reduced Bianchi identities for the self-dual five form are

dG(5) −G(4)m ∧ Fm =
1

2
ǫabH

a
(3) ∧Hb

(3)

DG(4)m −G(3)mn ∧ Fn = ǫabH
a
(3) ∧Hb

(2)m

DG(3)mn − fmn
pG(4)p −G(2)mnp ∧ F

p = ǫab

(
Ha

(3) ∧Hb
(1)mn + Ha

(2)m ∧Hb
(2)n

)

DG(2)mnp +Oqt
mnpG(3)qt −G(1)mnpq ∧ F

q = ǫab

(
Ha

(3) ∧Hb
(0)mnp − 3Ha

(2)m ∧Hb
(2)np

)

DG(1)mnpq −Otsl
mnpqG(2)tsl −G(0)mnpqt ∧ F

t = ǫab

(
4Ha

(2)[mHb
(0)npq] + 3Ha

(1)[mn ∧Hb
(0)pqt]

)

DG(0)mnpqt +Oslij
mnpqtG(1)slij = 10ǫabH

a
(1)[mnH

b
(0)pqt]

Olijkh
mnpqtsG(0)lijkh = 10ǫabH

a
(0)[mnpH

b
(0)qts] (A.4)

and for the three form

dHa
(3) + Ha

(2)m ∧ Fm = 0

DHa
(2)m + Ha

(1)mn ∧ Fn = 0

DHa
(1)mn + Ha

(0)mnpF
p = 0

DHa
(0)mnp = 0 (A.5)
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B. Right action of the group manifold

The identified group manifold X = G/Γ inherits the right action of the group GR on G.

The calculation of how the reduced fields transform under GR is somewhat involved and

it is helpful to clarify the discussion by first considering the simpler case of the two form

transformation. The action of GR on the two-form is generated by the Lie derivative Lω

Lω(B̂a
(2)) = Lω(B̂a

(2)) + Lω(̟a
(2)) = 0 (B.1)

where ω = ω(x) is the parameter associated to the right action on the group manifold G.

Using the fact that the Lie derivative may be written Lω = ıωd+dıω, Lω(νm) = −νnfnp
mωp

and choosing the convention ıωσ
m = −ωm, the transformations in (B.1) imply

Lω(B̂a
(2)) = −Lω(̟a

(2)) =
1

2
Mmnp

aωpσm ∧ σn + dΞa
(1) (B.2)

where Ξa
(1) ≡ ıω̟

a
(2). B̂a

(2) is in addition transformed by δ(Ξ)Y B̂
a
(2) = −dΞa

(1) defining a

gauge transformation δZ(ω) which is independent of the internal coordinates yi

δZ(ω)B̂a
(2) =

1

2
Mmnp

aωpσm ∧ σn (B.3)

i.e.

δZ(ω)B̂a
(2) = Lω(B̂a

(2)) − δY (Ξ)B̂a
(2) = −δY (Ξ)B̂a

(2) (B.4)

where the second equality comes from the fact that the B̂a
(2) is invariant under general

coordinate transformations generated by Lω. The reduced components of B̂a
(2) transform as

δZ(ω)Ba
(2) =

1

2
Mmnp

aωpAm ∧An

δZ(ω)Ba
(1)m = Ba

(1)nfmp
nωp −Mmnp

aωpAn

δZ(ω)Ba
(0)mn = 2Ba

(1)[m|pf|n]q
pωq +Mmnp

aωp (B.5)

The corresponding transformation for the four form potential requires more care as the flux

for this potential (3.12) is more complicated. The symmetry transformation of interest is

that generated by δZ(ω) rather than Lω and are defined by Lω(G(5)) = 0, which requires

the four form potential to transform as

δZ(ω)Ĉ(4) = Lω(Ĉ(4)) − δY (Ξ)Ĉ(4)

= −δY (Ξ)Ĉ(4)

=
1

2
ǫabΞ

a
(1) ∧ Ĥb

(3) + dχ(3) (B.6)

where the δY (Ξ) transformation is only defined up to the arbitrary total derivative dχ(3)

and it must be stressed that Ĉ(4) is invariant under the diffeomorphism transformation Lω,

but not δZ(ω). Combining (3.12) and (B.6), the symmetry transformation of interest is

δZ(ω)Ŝ(4) = δZ(ω)

(
1

2
̟a

(2) ∧ B̂
b
(2) −̟(4)

)
+

1

2
ǫabΞ

a
(1) ∧ Ĥb

(3) + dχ(3) (B.7)
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It will be shown that, although LωŜ is not y-independent, δZ(ω)Ŝ is. The transformation

δZ(ω)d̟(4) = Lω(d̟(4)) will be calculated first.9 Consider,

Lω(K(5)) = (ıωd+ dıω)
1

120
Kmnpqtσ

m ∧ σn ∧ σp ∧ σq ∧ σt

= −
1

24
K[mnpq|tf|l]s

tωsσm ∧ σn ∧ σp ∧ σq ∧ σl

−
1

24
Kmnpqtdω

t ∧ σm ∧ σn ∧ σp ∧ σq (B.8)

and the transformation

Lω(̟a
(2)) = −

1

2
Mmnp

aωpσm ∧ σn + dΞa
(1) (B.9)

Putting together (3.13), (B.8) and (B.9) the transformation of d̟(4) is therefore

Lω(d̟(4)) = Lω

(
−

1

2
ǫab̟

a
(2) ∧ d̟

b
(2) + K(5)

)

= −
1

12
ǫab

(
−

1

2
M[mn|p

aωpσm ∧ σn + dΞa
(1)

)
∧M|qts]

bσq ∧ σt ∧ σs

+
1

4
ǫab̟

a
(2) ∧Mmnp

bd(ωpσm ∧ σn) + Lω(K(5)) (B.10)

which can be written as

Lω(d̟(4)) = −dθ(4) −
1

2
ǫabd̟

a
(2) ∧Mmnp

bωpσm ∧ σn + Lω(K(5)) (B.11)

where

θ(4) =
1

2
ǫab̟

a
(2) ∧

(
−

1

2
Mmnp

bωpσm ∧ σn − dΞb
(1)

)
(B.12)

Now consider the second term in the above expression (B.11)

1

2
ǫabd̟

a
(2) ∧Mmnp

bωpσm ∧ σn =
1

12
ǫabM[mnp

aMqt]s
bωsσm ∧ σn ∧ σp ∧ σq ∧ σt (B.13)

Using the fact that ǫabM[mnp
aMqt]s

b = ǫabM[mnp
aMqts]

b, (B.13) may be written as

1

12
ǫabM[mnp

aMqts]
bωsσm ∧ σn ∧ σp ∧ σq ∧ σt (B.14)

and now making use of the identity 2ǫabM[mnp
aMqts]

b + 3K[mnpq|lf|ts]
l = 0 (3.17) to

write (B.14) as

1

2
ǫabd̟

a
(2) ∧Mmnp

bωpσm ∧ σn = −
1

24
K[mnpq|lf|ts]

lωsσm ∧ σn ∧ σp ∧ σq ∧ σt

+
1

12
K[mnp|slf|tq]

lωsσm ∧ σn ∧ σp ∧ σq ∧ σt (B.15)

9In all the variations of the fluxes δZ(ω)̟ = Lω(̟) as the fluxes are invariant under the δY and δX

transformations.
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and substituting it into (B.10), the variation of d̟(4) becomes

Lω(d̟(4)) = −dθ(4) −
1

2
ǫabd̟

a
(2) ∧Mmnp

bωpσm ∧ σn + Lω(K(5))

= −dθ(4) −
1

24
Kmnpqtdω

t ∧ σm ∧ σn ∧ σp ∧ σq

+
1

12
K[mnp|qtf|sl]

tωq ∧ σm ∧ σn ∧ σp ∧ σs ∧ σl

= d

(
−θ(4) −

1

24
Kmnpqtω

tσm ∧ σn ∧ σp ∧ σq

)
(B.16)

It is simple to show that, acting on the space of forms, [Lω, d] = 0 and therefore the

variation of ̟(4) commutes with the total derivative so that the expression (B.16) can be

integrated to give

Lω(̟(4)) = −θ(4) −
1

24
Kmnpqtω

tσm ∧ σn ∧ σp ∧ σq + dΩ(3)

= −
1

2
ǫab̟

a
(2) ∧

(
−

1

2
M b

mnpω
pσm ∧ σn − dΞb

(1)

)

−
1

24
Kmnpqtω

tσm ∧ σn ∧ σp ∧ σq + dΩ(3) (B.17)

for some arbitrary three form Ω(3). Now that Lω(̟(4)) has been determined, the variation

of the second term in (B.7) is considered

δZ(ω)

(
−

1

2
ǫab̟

a
(2) ∧ B̂

b
(2)

)
= −

1

2
ǫabLω(̟a

(2)) ∧ B̂
b
(2) −

1

2
ǫab̟

a
(2) ∧

(
δZ(ω)B̂b

(2)

)

= −
1

2
ǫab

(
−

1

2
Mmnp

aωpσm ∧ σn + dΞa
(1)

)
∧ B̂b

(2)

−
1

4
ǫab̟

a
(2) ∧Mmnp

bωpσm ∧ σn (B.18)

where a gauge transformation is incorporated into δ(ω)B̂b
(2) to give δZ(ω)B̂b

(2). Putting

these results together gives

δZ(ω)

(
−

1

2
ǫab̟

a
(2) ∧ B̂

b
(2) +̟(4)

)
=

1

4
ǫabMmnp

aωpσm ∧ σn ∧ B̂b
(2)

−
1

2
ǫabdΞ

a
(1) ∧ B̂

b
(2) +

1

2
̟a

(2) ∧ dΞ
b
(2) + dΩ(3)

−
1

24
Kmnpqtω

tσm ∧ σn ∧ σp ∧ σq (B.19)

The first two terms in the last line can be written as

1

2
ǫabdΞ

a
(1) ∧ B̂

b
(2) −

1

2
̟a

(2) ∧ dΞ
b
(2) = d

(
1

2
ǫabΞ

a
(1) ∧ B̂b

(2)

)
+

1

2
ǫabΞ

a
(1) ∧Hb

(3) (B.20)

and the first term in (B.20) can be removed by choosing an appropriate value for Ω(3)

in (B.19) and the last term of (B.20) cancels with the δY (Ξ) transformation of (B.7) to

leave the transformation

δZ(ω)Ŝ(4) =
1

4
ǫabMmnp

aωpσm ∧ σn ∧ B̂b
(2) −

1

24
Kmnpqtω

tσm ∧ σn ∧ σp ∧ σq (B.21)
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Substituting the Scherk-Schwarz ansatz for the potentials (3.20) and (3.21) into (B.21),

the gauge transformations of the potentials are found to be

δZ(ωm)S(4) =
1

4
ǫabMmnp

aωpBb
(2) ∧A

m ∧An −
1

24
Kmnpqtω

tAm ∧An ∧Ap ∧Aq

δZ(ωm)S(3)m = S(3)nfmp
nωp +

1

4
ǫabMnpq

aωqAn ∧Ap ∧Bb
(1)m

+
1

2
ǫabMmnp

aωpAn ∧Bb
(2) +

1

6
Kmnpqtω

tAn ∧Ap ∧Aq

δZ(ωm)S(2)mn = 2S(2)[m|pf|n]q
pωq+

1

4
ǫabMpqt

aωtAp ∧AqBb
(0)mn+ǫabMmpq

aωpAq ∧Bb
(1)n

+
1

2
ǫabMmnp

aωpBb
(2) −

1

2
Kmnpqtω

tAp ∧Aq

δZ(ωm)S(1)mnp = 3S(1)[mn|qf|p]t
qωt +

3

2
ǫabMmnq

aωqBb
(1)p −

3

2
ǫabMmqt

aωtBb
(0)npA

q

+Kmnpqtω
tAq

δZ(ωm)S(0)mnpq = 4S(0)[mnp|tf|q]s
tωs + 3ǫabM[mn|t

aBb
(0)|pq]ω

t −Kmnpqtω
t (B.22)
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